Электронная библиотека Веда
Цели библиотеки
Скачать бесплатно
Доставка литературы
Доставка диссертаций
Размещение литературы
Контактные данные
Я ищу:
Библиотечный каталог российских и украинских диссертаций

Вы находитесь:
Диссертационные работы России
Географические науки
Метеорология, климатология, агрометеорология

Диссертационная работа:

Школьник Игорь Маркович. Гидродинамическая модель регионального климата для европейской территории России : Дис. ... канд. физ.-мат. наук : 25.00.30 : Санкт-Петербург, 2004 107 c. РГБ ОД, 61:04-1/1196

смотреть содержание
смотреть введение
Содержание к работе:

Введение 3

Глава 1. Современное состояние проблемы 10

Глава 2. Описание модели 31

  1. Система уравнений и граничные условия 31

  2. Область интегрирования уравнений 35

  3. Пространственная аппроксимация 37

  4. Интегрирование по времени 43

  5. Физические процессы 45

  6. Ассимиляция данных глобальной модели 53

  7. Интерполяция начальных и граничных условий 59 Глава 3. Расчет современного климата 62

  1. Постановка численных экспериментов 65

  2. Анализ результатов моделирования 67

3.2.1. Расчет давления на уровне моря,
приземной температуры воздуха

и осадков в регионе 67

  1. Термический и гидрологический режим крупных речных водосборов 75

  2. Временная изменчивость температуры

и осадков на водосборах 86

Заключение и выводы 94

Литература 98

Введение к работе:

Последнее десятилетие характеризуется значительным прогрессом в изучении изменений глобального и регионального климата Земли. Для исследования естественных и возможных антропогенных изменений климата широко используются глобальные модели, включающие математическое описание всех известных физических процессов, действующих в системе почва-атмосфера. Процессы в Мировом океане в глобальных моделях климата с начала 80-х до середины 90-х годов были представлены упрощенно, либо путем задания климатических значений температуры поверхности океанов, либо с использованием так называемых моделей верхнего перемешанного слоя океанов (Шнееров и др., 1997), в полной мере не отражающих реальные взаимодействия в системе океан-атмосфера. Сценарии изменений равновесного климата, которые получаются с помощью таких моделей, часто оказываются нереалистичными для отдельных регионов суши и акваторий океанов {Houghton et al, 2001). Одной из причин этого является низкое пространственное разрешение большинства глобальных моделей общей циркуляции атмосферы (МОЦА). Такое разрешение оказывается недостаточным для правильного описания регионального климатического режима, важную роль в формировании которого играют сложная орография, узкие прибрежные зоны, внутренние водоемы и площади с разными типами растительного покрова. Эксперименты с глобальными МОЦА относительно высокого разрешения показывают, что они также недостаточно хорошо воспроизводят такие региональные характеристики, как компоненты водного баланса и термический режим (Wild et al, 1996; Senior, 1995; Stendel and Roeckner, 1998; Stratton, 1999;

Jones, 1999). Заметим также, что повышение разрешения глобальных МОЦА требует затрат больших вычислительных ресурсов, особенно если интегрирование уравнений проводится на длительные сроки.

На рубеже 90-х были созданы глобальные модели климата, которые включали в качестве отдельного блока модели общей циркуляции океана (МОЦО). В немалой степени этому способствовал рост производительности современных вычислительных средств. Трудность совместного моделирования процессов в атмосфере и океане связана с тем, что время установления процессов в океане на несколько порядков превышает время установления процессов в системе почва-атмосфера, что, безусловно, накладывает жесткие ограничения на пространственное разрешение модели атмосферы. Эксперименты по чувствительности к росту концентрации углекислого газа с помощью таких моделей демонстрируют значительные различия оценок региональных изменений термического режима и осадков. Кроме того, результаты существенно отличаются в зависимости от географического положения региона. Для большинства регионов земного шара расчетный рост среднегодовой приземной температуры воздуха при удвоении концентрации углекислого газа составляет такую же величину, как и погрешность расчета температуры в регионе при моделировании современного климата. Аналогичные проблемы обнаружены и при расчете региональных осадков.

В настоящее время развиваются различные методы расчета характеристик регионального климата. Один из них предполагает использование переменного разрешения в рамках одной глобальной модели с достаточно высоким разрешением над рассматриваемым регионом. Например, в работе {Deque and Piedelievre, 1995) при

исследовании климата Европейского региона разрешение глобальной модели плавно менялось от 600 км над Тихим океаном до 50 км над Западной Европой. Несмотря на некоторые достоинства метода, касающиеся, в первую очередь,. использования единой аппроксимации уравнений, он имеет и ряд существенных недостатков. Так, вызывает сомнение качество воспроизведения глобальной циркуляции на участках сетки с низким пространственным разрешением. Далее, применение одних и тех же схем параметризации физических процессов может оказаться несправедливым в условиях широкого диапазона представленных масштабов (Stratton, 1999; Krinner et al, 1997). Наконец, с вычислительной точки зрения такая модель является неэффективной, так как шаг интегрирования по времени модельных уравнений определяется наиболее высоким пространственным разрешением, принятым в модели. Исходя из критерия устойчивости и требования точности описания эволюции мезомасштабных движений, этот шаг весьма мал и должен соблюдаться во всей области интегрирования, что значительно увеличивает время расчетов.

В другой группе методов исследования регионального климата можно выделить три основных подхода (Giorgi and Mearns, 1991): эмпирический, полуэмпирический и модельный.

Эмпирические методы ориентированы на получение информации о возможных будущих изменениях в климатической системе с помощью имеющихся у исследователей данных о климатических режимах прошлого. В основе подхода лежит допущение, что отклик атмосферы на внешнее воздействие не зависит от физической природы этого воздействия. Эмпирические исследования основаны на использовании данных наблюдений и палеоклиматических реконструкций.

Использование эмпирического подхода для исследования регионального климата и его изменений представляется весьма ограниченным в силу линейности статистических соотношений, на которых эти методы базируются. Они не учитывают в полной мере влияние климатически значимых обратных связей, и нелинейность взаимодействий в климатической системе. Например, внутренняя изменчивость в системе океан-атмосфера, а также свойства подстилающей поверхности (растительный покров) могут меняться под влиянием антропогенных воздействий. Эмпирические методы, таким образом, не являются физически полными, и позволяют делать лишь качественные оценки возможных изменений климата. Их несомненным преимуществом является вычислительная эффективность. Полуэмпирические методы используют линейные эмпирические соотношения, описывающие статистические связи между крупномасштабными (глобальными) и локальными (региональными) переменными. При этом расчет крупномасштабных переменных производится с помощью глобальной МОЦА, а региональные переменные определяются с привлечением данных наблюдений и результатов моделирования крупномасштабных процессов.

В настоящее время для исследования регионального климата широко применяются физически полные гидродинамические модели высокого пространственного разрешения, построенные для ограниченной территории и включающие атмосферу, деятельный слой почвы континентов и внутриматериковые водоемы. Здесь и в дальнейшем такие модели будут называться моделями регионального климата (МРК). Поскольку для интегрирования системы уравнений такой модели требуется знать условия на боковых границах, она

совмещается на принципах вложенных сеток с физически полной глобальной моделью системы атмосфера-океан-криосфера-деятельный слой почвы на континентах. Размеры региональной области обычно составляют 10 - 10 км, горизонтальное разрешение МРК в 3-6 раз более высокое по сравнению с разрешением глобальной модели. Связь между физическими и динамическими процессами в глобальной и региональной моделях обычно осуществляется по принципу одностороннего взаимодействия, в результате которого учитывается только влияние глобальных крупномасштабных процессов на региональные. Областью интегрирования по вертикали является, как и в глобальных МОЦА, вся толща атмосферы. Значения зависимых переменных на границах региональной модельной области рассчитываются с помощью системы уравнений глобальной МОЦА, а внутри области - с помощью системы уравнений МРК. При численном интегрировании системы уравнений МРК учитывается все многообразие мезомасштабных факторов, таких как неоднородность свойств подстилающей поверхности, наличие малых по размерам внутренних водоемов, реалистичная орография и другие, не представленные в глобальной МОЦА. Можно указать следующие области применения таких МРК:

оценка региональных климатических изменений в результате регионального и глобального антропогенного воздействия;

региональный прогноз погоды;

распространение примесей при расчете регионального загрязнения атмосферы и др.

Эксперименты с региональными моделями атмосферы показали, что их использование в исследованиях климата позволяет улучшить

расчет пространственных распределений региональных температуры и осадков по сравнению с расчетами по глобальным МОЦА {Giorgi, 1990; Giorgi and Marinucci, 1991; Noguer et ah, 1998). Это улучшение происходит в основном из-за более реалистичного, чем в глобальных МОЦА, представления топографии и свойств подстилающей поверхности.

Целью представленной работы являлось построение первой российской физически полной модели регионального климата, встроенной в глобальную МОЦА ГГО и предназначенной для расчета характеристик атмосферной циркуляции с высоким пространственным разрешением. Актуальность темы исследования обусловлена необходимостью сокращения возникшего за последние 10 лет отставания России от развитых стран в области гидродинамического моделирования регионального климата.

В качестве объекта исследования был выбран регион, включающий Европейскую территорию России. Географическими особенностями этого региона являются наличие больших внутренних водоемов, играющих важную роль в формировании локального влагооборота: Черное, Азовское и Каспийское моря на юге России; Балтийское и Белое моря на севере, а также такие крупные озера, как Ладожское, Онежское и Чудское. За последние 40 лет в результате активной хозяйственной деятельности было построено около десяти крупных водохранилищ на территории России и сопредельных государств. Такие искусственные водоемы также играют определенную роль в формировании локального климата, ослабляют его континентальность как зимой, так и летом и влияют на распределение осадков. Наконец, горные системы Карпат, Скандинавии, Кавказа и

Урала существенно влияют на перемещение воздушных масс над Восточно-Европейской равниной. Все упомянутые особенности выбранного региона представлены в глобальных МОЦА весьма грубо или вообще отсутствуют.

В задачи работы входили

формулировка физико-математической модели общей циркуляции атмосферы для ограниченной территории;

построение численной схемы интегрирования полных уравнений гидротермодинамики в ограниченной области;

разработка алгоритма сопряжения глобальной и региональной сеточных областей;

подключение и настройка блока параметризаций физических процессов;

моделирование атмосферной циркуляции, термического режима и влагооборота атмосферы на европейской части России и сопредельных стран.

В первой главе приводится обзор литературы, посвященной разработке региональных моделей и их использованию в исследованиях климата.

Вторая глава содержит описание модели регионального климата. Приводятся методы пространственной и временной аппроксимации основных гидродинамических уравнений с учетом особенностей решения задачи в ограниченной области. Также приведено описание глобальных схем параметризаций физических процессов, которые используются в МРК с некоторыми модификациями.

Третья глава посвящена анализу результатов моделирования современного климата на европейской территории России.

Подобные работы
Лукин Андрей Борисович
Усовершенствованная технология ведения режимно-справочного банка данных "актинометрия" и ее применение для исследования прозрачности атмосферы на территории России
Беркович Леопольд Владимирович
Гидродинамический краткосрочный прогноз погоды в пунктах для территории России
Осипова Татьяна Николаевна
Особенности географического распределения эритемной ультрафиолетовой радиации на территории России
Александрова Анна Анатольевна
Климатологическое обеспечение теплового режима зданий на Северо-Западе Европейской территории России
Фокичева Анна Алексеевна
Оптимизация регламента погодо-хозяйственных решений на примере потребителей северо-запада Европейской территории России
Липовицкая Ирина Николаевна
Климатологический анализ характеристик рассеяния примесей с использованием численных моделей применительно к Северо-Западному региону России
Деркач Александра Александровна
Биогенный рельеф лесной зоны Европейской территории России
Беликов Игорь Борисович
Газовые примеси атмосферы над территорией России по наблюдениям автоматизированным комплексом аппаратуры
Гинзбург Вероника Александровна
Формирование компонентов баланса свинца в атмосфере над территорией России
Тарбеева Анна Михайловна
Морфология и динамика русел водотоков овражно-балочной сети и малых рек юга лесной зоны Европейской территории России

© Научная электронная библиотека «Веда», 2003-2013.
info@lib.ua-ru.net