Использование мобильного транспорта в жизнедеятельности человека стало неотъемлемой частью общественного развития. Однако моторизация общества выдвигает ряд серьезных социальных проблем, среди которых одно из первых мест занимают проблемы защиты окружающей среды и сохранения природных ресурсов. Транспортные средства - основные потребители энергии и одни из главных источников загрязнения атмосферы. Поэтому главные направления совершенствования транспортных энергоустановок в настоящее время определяются двумя важнейшими социально-экономическими аспектами: рациональное использование топлива нефтяного происхождения, в том числе, замена его альтернативными энергоносителями; снижение вредного воздействия транспортных средств на окружающую среду. Постоянно ужесточающиеся требования по ограничению выброса вредных веществ транспортными средствами и экономии энергоресурсов требуют от производителей разработки принципиально новых энергетических установок, работающих на новых экологически чистых видах топлив ненефтяного происхождения. Особое место среди альтернативных топлив для двигателей внутреннего сгорания отводится водороду. Учитывая огромные ресурсы водорода в природе и возможность его получения из возобновляемых сырьевых источников, например, растительных, немаловажную роль играет то, что при использовании его в качестве топлива на транспортных средствах создаются возможности практической неисчерпаемости данного энергоносителя. Водород обладает чрезвычайно высокой массовой энергоемкостью (почти в 3 раза большей, чем у традиционных нефтяных топлив), уникальными кинетическими характеристиками сгорания. Важным свойством водорода является также то, что в условиях реагирующей углеводородно-воздушной среды он может выступать в роли химически реакционно-активного компонента (промотора), оказывающего эффективное воздействие на кинетические параметры внутрицилиндровых процессов, в том числе, и на кинетический механизм образования токсических компонентов продуктов сгорания. Однако, применение водорода в качестве моторного топлива транспортного средства в настоящее время упирается в проблему энерговооруженности (запаса хода) автомобиля. Существующие системы хранения водорода неприемлемы для транспорта либо вследствие малой емкости, либо вследствие технической сложности и недостаточной безопасности в эксплуатации и аварийных ситуациях. Даже наилучший из них по энергоплотности - криогенный - уступает по этому показателю нефтяным топливам в несколько раз, не говоря уже о том, что в техническом отношении он неизмеримо сложнее систем хранения и транспортирования жидких топлив. Одним из альтернативных решений проблемы использования данного энергоносителя на транспорте является использование безопасных жидких водородосодержащих продуктов (носителей водорода) для получения энергетического газа с высоким содержанием водорода непосредственно на борту транспортного средства путем их предварительного химического преобразования (конвертирования). При этом перспектива использования традиционного нефтяного топлива в качестве исходного (сырьевого) продукта для организации конверсии с целью получения водородного газа весьма проблематична, так как связана с высокими энергетическими затратами и малым выходом целевого компонента (водорода) в реакциях конверсионного процесса. Более предпочтительными являются соединения, имеющие более простую химическую структуру (например, простейшие спирты и эфиры) и, следовательно, более низкие уровни температуры диссоциации и тепловых эффектов в эндотермических реакциях разложения (затраты тепловой энергии на преодоление внутримолекулярных связей), соизмеримые с уровнем тем-пературно-энергетического потенциала теплоносителя, то есть отработавших газов на выпуске двигателя. В этом случае обуславливается реальная возможность утилизации "бесплатной" тепловой энергии отработавших газов для организации конверсионного процесса, исключающая необходимость в дополнительном источнике теплоты. Отдельные аспекты проблемы конверсии метанола на теоретическом и практическом уровнях изучены в химических областях науки и техники. В публикациях по двигательной тематике подобные исследования нашли свое отражение относительно недавно. Накоплен определенный исследовательский опыт по разработке для двигателей с искровым зажиганием систем синтеза водородного газа из спиртовых топлив. Применительно к дизелям эта проблема остается, по-прежнему, еще малоисследованной, о чем свидетельствует крайне малое количество публикаций по данной проблеме в отечественной литературе. Реализация термохимического преобразования топлива в системе питания дизеля по сравнению с ДВС с искровым зажиганием имеет ряд отличительных особенностей и вызывает необходимость индивидуального подхода при его осуществлении с решением ряда специфических вопросов, обусловленных условиями рабочего процесса двигателя. Температурно-энергетическое состояние теплоносителя (ОГ) на выпуске дизеля меняется с изменением нагрузочного и скоростного режимов его работы, что обуславливает необходимость решения ряда дополнительных вопросов при разработке конверсионной системы, адаптированной к условиям работы двигателя. Основной вклад в ущерб окружающей среде от выбросов вредных веществ дизелями оказывают оксиды азота и частицы. Наиболее сложно обеспечить уменьшение выбросов оксидов азота до перспективных норм и это приобретает особое значение при разработке новых силовых установок, работающих на альтернативных топливах, и проведении поисковых исследований перспективных рабочих процессов. Влияние водородосодержащих продуктов конверсии спиртового топлива на внутрицилиндровые процессы дизеля и механизм окисления азота при сгорании водородно-дизельного смесевого топлива до настоящего времени во многом остаются не раскрытыми, что обуславливает необходимость в проведении дальнейших теоретических исследований характера и эффективности этого влияния. Решение задач по социально важным проблемам, указанным выше, определяет актуальность тематики диссертации. Настоящая работа посвящена совершенствованию экологических и топ-ливно-экономических показателей дизеля на основе применения в качестве добавки к основному топливу водородосодержащего газа, полученного в автономной (бортовой) системе с использованием метанола как исходного сырьевого продукта. На защиту выносятся: о Методически обоснованный алгоритм функционирования транспортной энергетической установки в составе базового дизеля и автономной (бортовой) системы генерирования водородосодержащего газа, используемого в качестве реакционно-активного компонента бинарного водородно-дизельного топлива для питания ДВС. о Результаты расчетно-теоретического изучения проблемы согласования уровней располагаемого температурно-энергетического потенциала отработавших газов на выпуске дизеля (греющего теплоносителя) и энергетических затрат на организацию эндотермического процесса химического преобразования жидкого носителя водорода (метанола) в водородосодер-жащий газ с учетом изменения режимных параметров ДВС. С учетом полученных результатов сформулирован алгоритм управления целесообразным расходом конвертируемого метанола в системе питания дизеля по условию обеспечения наибольшей глубины термохимического преобразования спирта в синтез - газ с максимальным выходом водорода в зависимости от характера изменения режимных параметров дизеля. о Предложенная на основе современных методов моделирования методика для расчета рабочего процесса базового дизеля, работающего в составе опытной энергетической установки на бинарной водородно-дизельной композиции, с определением закономерностей окисления азота при её сгорании. о Результаты исследования характера влияния режимных параметров базового дизеля, входящего в состав опытной энергетической установки, на изменение компонентного состава синтезированного водородосодержаще-го газа и его реакционно-кинетической способности воздействия на внут-рицилиндровые процессы, определяющие эколого-экономические качества две. о Рекомендации по повышению топливной экономичности и совершенствованию экологических качеств существующих и перспективных моделей транспортных дизелей на основе предложенного алгоритма функционирования, предполагающего использование добавок к рабочему телу водоро-досодержащего газа, синтезированного в автономной системе из жидких носителей этого газа. Изучение указанных выше положений проводилось на основе следующих методов исследований. Методология и методика моделирования внут-рицилиндровых процессов при сгорании альтернативного водородосодержа-щего топлива представляло собой совокупное сочетание расчетно-теоретических и экспериментальных работ. Для проведения расчетно-теоретических исследований были использованы математическая модель и программное обеспечение, позволяющие определить энергетические и экономические показатели дизеля, а также параметры процесса, лежащие в основе образования оксидов азота. Проверка адекватности математической модели проводилась на основе сравнения данных моделирования и результатов экспериментальных исследований дизеля, работающего на традиционном дизельном и альтернативном водородно-дизельном топливах. Объектом исследования являлась энергетическая установка, созданная на базе совместно работающих модернизированного дизеля типа 44 10,5/12 и термохимического преобразователя спиртового топлива в водородосодержа-щий газ.
|