Электронная библиотека Веда
Цели библиотеки
Скачать бесплатно
Доставка литературы
Доставка диссертаций
Размещение литературы
Контактные данные
Я ищу:
Библиотечный каталог российских и украинских диссертаций

Вы находитесь:
Диссертационные работы России
Технические науки
Строительная механика

Диссертационная работа:

Сергеев Андрей Викторович. Разработка физико-механических моделей и методов расчета элементов конструкций из различных структурно-неоднородных материалов на основе применения метода конечных элементов : Дис. ... канд. техн. наук : 05.23.17 Волгоград, 2006 140 с. РГБ ОД, 61:06-5/1765

смотреть содержание
смотреть введение
Содержание к работе:

ВВЕДЕНИЕ 4

ГЛАВА ПЕРВАЯ. РАЗРАБОТКА МЕТОДОВ ОСРЕДНЕНИЯ
УПРУГИХ СВОЙСТВ РАЗЛИЧНЫХ СТРУКТУРНО -
НЕОДНОРОДНЫХ МАТЕРИАЛОВ 14

Формирование матрицы упругих свойств кубических,

гексагональных и тригональных кристаллов 14

Расчет упругих свойств однофазных и двухфазных

поликристаллических материалов 21

Разработка метода расчета упругих свойств композита, состоящего из изотропной матрицы и анизотропных включений... 27 Разработка метода расчета упругих свойств различных структурно - неоднородных материалов на основе построения

векториальных моделей 32

Выводы по первой главе 41

ГЛАВА ВТОРАЯ. ПОСТРОЕНИЕ ФИЗИКО-МЕХАНИЧЕСКОЙ МОДЕЛИ И РАЗРАБОТКА МЕТОДА РАСЧЕТА НАПРЯЖЕННО - ДЕФОРМИРОВАННЫХ СОСТОЯНИЙ СТРУКТУРНО -

НЕОДНОРОДНЫХ МАТЕРИАЛОВ 43

Обоснование физико-механической модели, построенной на

основе рассмотрения на микро-, мезо- и макроуровнях 43

Масштабный эффект упругих свойств кубических, гексагональных и тригональных поликристаллов и композитов, состоящих из изотропной матрицы и анизотропных включений.... 48 Разработка блок-схемы и алгоритма формирования расчетной модели элементов конструкций из структурно - неоднородных материалов на основе применения метода конечных

элементов 57

Выводы по второй главе 63

з
ГЛАВА ТРЕТЬЯ. РАСЧЕТ НАПРЯЖЕННО

ДЕФОРМИРОВАННЫХ СОСТОЯНИЙ В ЭЛЕМЕНТАХ
ф КОНСТРУКЦИЙ НА ОСНОВЕ КОНЕЧНО - ЭЛЕМЕНТНОЙ

МОДЕЛИ БЕТОНА 65

  1. Расчет НДС в зависимости от процентного содержания заполнителя 65

  2. Роль особенностей распределения заполнителя в исследованиях НДС (упорядоченное, неупорядоченное) 75

  3. НДС для различных схем нагружений 80

  4. Влияние формы зерен заполнителей на НДС в бетоне 86

  5. Выводы по третьей главе 90

ГЛАВА ЧЕТВЕРТАЯ. НЕОДНОРОДНОСТЬ НДС В
ЗАВИСИМОСТИ ОТ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ,
РАЗМЕРОВ ЗАПОЛНИТЕЛЯ И НАЛИЧИЯ ДЕФЕКТОВ
СТРУКТУРЫ БЕТОНА 92

  1. Влияние наличия пор и трещин на НДС в бетоне 92

  2. НДС в зависимости от разброса размеров включения 102

  3. НДС в зависимости от соотношения физико-механических свойств матрицы и заполнителя 109

  4. Сравнительные исследования неоднородности напряженно-

# деформированных состояний в поликристаллах 116

4.5 Выводы по четвертой главе 122

ЗАКЛЮЧЕНИЕ 124

ЛИТЕРАТУРА 128

Введение к работе:

Актуальность темы

Современное развитие техники, повышение напряженности деталей машин и элементов конструкций, применение сложных конструкций, высоких напряжений и скоростей нагружения, низких и высоких температур, сложных схем нагружения, различных по размерам конструкций, начиная от весьма малых до крупногабаритных элементов сооружений, выдвигают новые повышенные требования к механическим свойствам материалов, формирование которых связано с особенностями структуры, обуславливают необходимость разработки методов расчета с учетом реальных свойств материалов [69].

Вопросы учета реальных свойств материалов имеют большое значение в развитии механики твердого деформируемого тела [69,70,87]. Классические представления [15] о сплошном, однородном, изотропном, линейно-упругом теле в большинстве случаев уже не удовлетворяет практику, так как почти все материалы, применяемые в машиностроении и строительстве: металлы и сплавы, обладающие неоднородной поликристаллической структурой, бетон, кирпич, дерево, различного рода армированные пластики и т.п. - являются композиционными материалами [14,17], обладающими анизотропией физико-механических свойств [4,5,67].

Широкое распространение в технике структурно - неоднородных материалов требует разработки и создания механики их деформирования и разрушения, т.е. механики структурно-неоднородных тел. Необходимость разработки такой теории дополнительно усиливается тем, что свойства самого материала могут в известной степени назначаться в процессе проектирования [14,69].

При моделировании таких сложных систем, которыми являются структурно - неоднородные материалы, поликристаллические материалы, композиты, бетон, состоящий из изотропной матрицы с распределенными в ней, зернами анизотропного заполнителя и др., основная проблема заключается в вы-

5 боре рациональной модели, которая учитывала бы основные структурные особенности материала, и, в то же время, позволяла бы избежать непреодолимые математические трудности. Один из возможных способов решения этой проблемы заключается в приеме рассмотрения структурно - неоднородного тела на различных уровнях, применявшийся в работах В.В. Болотина, А.А. Ильюшина, В.А. Ломакина [15,39,68] и др.:1) на микроуровне, характеризуемом для структурно - неоднородных материалов размерами микрообъема (для поликристалла - размерами зерна, для бетона - размером цементного камня между зернами крупного заполнителя или зерна мелкого заполнителя), учитывающим характерные структурные особенности взаимодействия матрицы с заполнителем; 2) на мезоуровне, включающем минимальный объем структурно - неоднородного материала, который можно наделить осредненными свойствами макрообъема; 3) на макроуровне, определяемом характерными размерами тела в целом (например, характерными размерами элементов конструкций).

В ряде работ [5,28,34,84] на основе расчета статистических моделей структурно - неоднородных материалов, разработанных с использованием приема рассмотрения на различных уровнях, исследуются напряженно-деформированные состояния в микрообъемах при различных видах напряженного состояния и рассматриваются микроструктурные факторы концентрации напряжений и деформаций. В связи с широким распространением в строительстве различных бетонов, обладающих неоднородностью и анизотропией свойств, большое значение приобретает вопрос о влиянии анизотропии структурных составляющих на концентрацию напряжений и деформаций. Исследованию этого вопроса посвящен ряд работ [4,9,23,25,34,42,75,110], что связано с актуальностью проблемы и ее сложностью. Тем не менее, в настоящее время еще недостаточно исследованы неоднородность напряженно - деформированных состояний, и, как следствие, концентрация напряжений в бетоне с учетом анизотропии упругих свойств заполнителя и различных факторов, что обусловлено, в частности, сложностью пространственной модели материала, контура зерна заполнителя в зоне концентрации, наличием в теле изотропной мат-

рицы трещин и пор, т.е. сложностью геометрической модели. Недостаточно полно исследованы процессы взаимодействия между изотропной матрицей и зернами анизотропного заполнителя, приводящие к неоднородности напряженно-деформированного состояния, что необходимо учитывать при расчетах элементов конструкций, изготовленных из бетона, и оценивать прочностные свойства в целом с учетом свойств матрицы и заполнителя.

Изучение напряженно-деформированных состояний играет большую роль в оценке прочности элементов конструкций, имеющих различные факторы концентрации напряжений [35,56,57,97]. Детальное изучение напряженно-деформированного состояния в местах концентрации является обязательной частью общего прочностного расчета соответствующих конструкций и важнейшей предпосылкой для создания оптимальных и надежных конструкций [74].

Таким образом, представляются актуальным разработка физико-механических моделей и методов расчета элементов конструкций из структурно-неоднородных материалов и композитов на основе построения расчетных моделей, учитывающих свойства материалов составляющих данную композицию, а также исследование влияния на прочность свойств различных структурных составляющих композита, формы зерен заполнителей, особенностей распределения заполнителя, его процентного содержания, характера нагрузки и вида напряженно-деформированного состояния, что необходимо для определения уточненных значений коэффициентов концентрации напряжений при выполнении расчетов элементов конструкций, повышения точности расчетов, обоснования наиболее оптимальных структурных композиций [61].

Цель работы

Целью настоящей работы является разработка физико-механических моделей и методов расчета элементов конструкций из различных структурно-неоднородных материалов на основе использования метода конечных элементов. Цель работы определила и основные задачи:

  1. разработка методов расчета упругих свойств поликристаллов на основе построения векториальных моделей, а также композита состоящего из изотропной матрицы и анизотропных включений;

  2. построение физико-механических моделей на основе исследования масштабного эффекта упругих свойств кубических, гексагональных и тригональных поликристаллов и композитов, состоящих из изотропной матрицы и анизотропных включений;

  3. разработка метода расчета напряженно-деформированных состояний элементов конструкций из различных структурно-неоднородных материалов на основе построения физико-механических моделей, с различными структурными составляющими;

  4. исследование неоднородности напряженно-деформированных состояний в зависимости от процентного содержания и особенностей распределения заполнителя, наличия трещин и пор, различных видах напряженного состояния;

  5. исследование концентрации напряжений и деформаций в бетоне, обусловленных различиями по форме, размерам и физико-механическим свойствам зерен заполнителя, соотношением физико-механических свойств матрицы и заполнителя при различных видах напряженного состояния.

Решение этих задач позволяет выполнять расчеты элементов конструкций из структурно-неоднородных материалов, определять микроструктурные коэффициенты концентрации напряжений и деформаций, и, на основе этого, проводить анализ причин разрушения и обосновывать наиболее оптимальные структурные композиции бетона. Актуальность тематики подтверждается большим интересом к исследованиям напряженно-деформированных состояний различных структурно-неоднородных материалов приведенным в отечественных и зарубежных работах.

Работа выполнена на кафедре «Сопротивление материалов» Волгоградского государственного архитектурно-строительного университета.

Основное содержание диссертации

Основные задачи работы определили основное содержание диссертации, состоящей из введения, четырех глав и заключения.

В первой главе рассматриваются приемы осреднения упругих свойств различных поликристаллических материалов. Приведены методики расчета упругих свойств однофазных и двухфазных поликристаллических материалов, а также композита, состоящего из изотропной матрицы и анизотропных включений с использованием осреднений по Хиллу. Формирование матрицы упругих свойств отдельных зерен, составляющих поликристалл выполнено на основе применения закона преобразования тензора четвертого ранга. Построены векториальные модели позволяющие оценивать анизотропию упругих свойств материалов, с различными кристаллическими решетками. Приведены результаты расчета упругих свойств различных структурно-неоднородных материалов на основе построения векториальных моделей модуля упругости и модуля сдвига и разработки метода осреднения всех значений упругих свойств, распределенных по поверхности векториальной модели.

Во второй главе обоснован прием построения физико-механической модели структурно-неоднородного тела на основе рассмотрения на различных уровнях. Приведены результаты сравнительного исследования масштабного эффекта упругих свойств однофазных кубических, гексагональных, триго-нальных и двухфазных поликристаллических материалов, а также бетона, представленного в виде композита: изотропная матрица - анизотропные включения. Получено конечное значение числа зерен заполнителя в объеме матрицы раствора, который можно наделять осредненными свойствами макрообъема. Разработана блок-схема и алгоритм формирования расчетной модели элементов конструкций из структурно - неоднородных материалов на основе применения метода конечных элементов.

В третьей главе приведены результаты расчета напряженно-деформированных состояний в бетоне на основе использовании метода конечных элементов. Выполнен расчет НДС бетона в зависимости от следующих

9 факторов: процентного содержания и особенностей распределения заполнителя, наличия трещин и пор, различных видов напряженного состояния.

В четвертой главе исследован характер неоднородности напряжений в зависимости от физико-механических свойств и формы зерен заполнителя, а также соотношения физико-механических свойств изотропной матрицы и анизотропного заполнителя, приведены результаты сравнительных исследований неоднородности напряженно - деформированных состояний в поликристаллах. .

Основные положения диссертации

На защиту выносятся следующие основные положения диссертации.

  1. Разработка метода расчета упругих свойств поликристаллических материалов на основе построения векториальных моделей.

  2. Разработка физико-механических моделей композита состоящего из изотропной матрицы и, распределенных в ней анизотропных зерен заполнителя, на основе исследования масштабного эффекта упругих свойств структурных составляющих.

  3. Разработка методов расчета элементов конструкций с учетом различных геометрических факторов концентрации напряжений (наличие в бетоне трещин и пор различной формы) на основании построения конечно - элементных моделей композиционных материалов.

  4. Исследование неоднородности НДС в бетоне в зависимости от формы, размеров и физико-механических свойств структурных составляющих.

Научная новизна и достоверность

В диссертации разработана методика осреднения упругих свойств поликристаллических материалов с различными типами решеток на основе построения векториальных моделей. Разработан метод расчета упругих свойств композиционных материалов для объемов с различным соотношением фаз составляющих композит.

Определено минимальное число зерен заполнителя в мезообъеме матрицы раствора бетона, который можно наделить осредненными свойствами макрообъема.

Исследованы НДС различных моделей структурно-неоднородного тела (бетона) с учетом структурных и геометрических (трещин и пор различной формы) факторов концентрации напряжений при различных видах напряженного состояния. Построены эпюры нормальных напряжений и определены коэффициенты концентрации напряжений с учетом анизотропии упругих свойств, микроструктурных и геометрических факторов. Выполнено сравнение полученных результатов с известными решениями, полученными для изотропного материала. Показано, что с учетом анизотропии упругих свойств местные напряжения могут принимать значения как большие, так и меньшие, в зависимости от формы, размера и физико-механических характеристик материала по сравнению с изотропным решением. Установлено, что коэффициенты концентрации, определенные с учетом микроструктурных факторов, могут существенно превышать средние значения, полученные для изотропного тела.

Достоверность основных полученных результатов подтверждается сравнением с известными результатами, выполненными другими исследователями, и анализом результатов расчетов, полученных для изотропного тела.

Научное и практическое значение результатов исследований

Полученные результаты имеют большое значение для разработки теоретических вопросов механики структурно-неоднородных тел, развития методов расчетов и использования на практике.

Научная значимость заключается в разработке модели и метода расчета элементов конструкций из структурно - неоднородных материалов на примере композита изотропная матрица - анизотропный заполнитель. Показана неоднородность напряжений и деформаций в упругой области в зависимости от различных геометрических факторов, анизотропии упругих свойств, структуры, вида напряженно-деформированных состояний. Установлены зависимости

напряжений от структурных и геометрических факторов, видов НДС, процентного содержания фаз в структурно - неоднородных композициях. Это позволяет определить область применения классических теорий в механике деформируемого твердого тела и использовать полученные данные для разработки расчетных моделей структурно - неоднородных тел.

Практическое значение разработанного метода расчета элементов конструкций из структурно-неоднородных материалов с учетом анизотропии упругих свойств, микроструктурных и геометрических факторов, заключается в том, что данный метод может быть рекомендован для расчета НДС с учетом реальных свойств для определения уточненных значений коэффициентов концентрации напряжений при расчете элементов конструкций, выполненных из композиционных материалов, а так же для проектирования самого материала с заданными свойствами и анализа причин разрушения элементов конструкций.

Апробация работы

Материалы диссертационной работы докладывались и обсуждались на:

  1. международной научно-технической конференции «Новые перспективные материалы и технологии их получения (НПМ)» (Волгоград, 2004) Волгоградский государственный технический университет;

  2. IV Международной научно-технической конференции «Надежность и долговечность строительных материалов, конструкций и оснований фундаментов» (Волгоград, 2005) Волгоградский государственный архитектурно - строительный университет;

  3. второй Всероссийской научно-технической конференции «Наука, техника и технология XXI века (НТТ-2005)» (Нальчик, 2005);

  4. международной научно-технической конференции «Динамика, прочность и ресурс машин и конструкций» (Киев, 2005) Институт проблем прочности;

12 5) научных конференциях Волгоградского государственного архитектурно-строительного университета и Волгоградского государственного технического университета в 2004, 2005, 2006 годах.

Основные результаты диссертации опубликованы в следующих работах.

  1. Кукса Л.В. Построение физико-механических моделей композиционных структурно - неоднородных материалов на основе рассмотрения на микро-, мезо- и макроуровнях / Л. В. Кукса [и др.] // Новые перспективные материалы и технологии их получения (НПМ).: междунар. конф. Секция: Слоистые композиционные материалы. -Волгоград, 2004, Т. 2.-С. 153-154.

  2. Кукса Л.В. Построение физико-механических моделей бетона на основе разработки методов осреднения упругих свойств и исследования масштабного эффекта на микро-, мезо- и макроуровнях. / Л. В. Кукса, А. В. Сергеев // Современное состояние и перспективы развития строительного материаловедения.: восьмые академические чтения РААСН. - Самара, 2004. - С. 297 - 300.

  3. Кукса Л.В. Разработка расчетной модели бетона на основе осреднения упругих свойств и исследования масштабного эффекта на микро-, мезо- и макроуровнях. / Л. В. Кукса, А. В. Сергеев // Вестник Волгоградского государственного архитектурно - строительного университета. Серия: Технические науки. - Волгоград, 2004. -Вып.4(12)-С.21-28.

  4. Кукса Л.В. Расчет напряженно-деформированных состояний в элементах конструкций на основе разработки конечно-элементной модели бетона. / Л. В. Кукса, А. В. Сергеев // Надежность и долговечность строительных материалов, конструкций и оснований фундаментов. - Г/ Международная научно-техническая конференция. -Волгоград, 2005. - С. 46 - 51.

  5. Кукса Л.В. Разработка методов расчета элементов конструкций на основе конечно-элементной модели бетона. / Л. В. Кукса, А. В. Сергеев // Вестник Волгоградского государственного архитектурно - строительного университета. Серия: Технические науки. - Волгоград, 2005. Вып.5( 16) - С. 9 -15.

  6. Кукса Л.В. Неоднородность напряженно-деформированных состояний в

13 бетоне в зависимости от физико-механических свойств и формы заполнителя. / Л. В. Кукса, А. В. Сергеев // Наука, техника и технология XXI века (НТТ-2005).: материалы второй Всероссийской научно-технической конференции. - Нальчик, 2005. - Т. 2. - С. 52-56.

  1. Кукса Л.В. Разработка методов расчета элементов конструкций из структурно - неоднородных материалов на основе построения физико-механических моделей. / Л. В. Кукса [и др.] // Динамика, прочность и ресурс машин и конструкций. Тезисы докладов международной научно-технической конференции. - Киев, Украина, 2005.-Т. 1.С. 171-172.

  2. Кукса Л.В. Векториальные модели кубических, гексагональных и триго-нальных кристаллов и масштабный эффект упругих свойств композитов на их основе / Л. В. Кукса, А. В. Сергеев // Известия Волгоградского государственного технического университета: межвузовский сб. науч. ст. Серия: Материаловедение и прочность элементов конструкций. - Волгоград, 2005. - С. 85 - 90.

Структура и объем диссертации

Диссертация состоит из введения, четырех глав и заключения. Содержание работы изложено на 140 страницах машинописного текста, рисунков — 51, таблиц - 9, список литературных источников включает 122 наименования.

Подобные работы
Моисеенко Маргарита Олеговна
Метод расчета разномодульных прямоугольных тонкостенных элементов конструкций с разрывными параметрами с учетом нелинейностей
Матора Алексей Викторович
Расчет элементов конструкций из разномодульных армированных материалов с учетом воздействия радиационных сред
Овчинников Илья Игоревич
Модели и методы расчета стержневых и пластинчатых армированных конструкций с учетом коррозионных повреждений
Проскурнова Ольга Алексеевна
Совершенствование расчетов сочлененных оболочек при упруго-пластическом состоянии материала на основе метода конечных элементов
Селиванов Филипп Сергеевич
Применение теории наведенной неоднородности для расчета деформаций слоистой среды на основе вариационного метода В. З. Власова
Говинд Прасад Ламичхане
Исследование напряженно-деформированного состояния пересекающихся отсеков тонких оболочек методом глобальных элементов
Тюкалов Юрий Яковлевич
Решение задач строительной механики методом конечных элементов в напряжениях на основе функционала дополнительной энергии и принципа возможных перемещений
Шеин Александр Иванович
Метод сеточной аппроксимации элементов в задачах строительной механики нелинейных стержневых систем
Табанюхова Марина Владимировна
Решение задач прочности элементов сооружений с концентраторами методом фотоупругости
Ваганов Александр Борисович
Разработка методов расчета позиционирования плавучих технических средств освоения шельфа в сложных эксплуатационных условиях

© Научная электронная библиотека «Веда», 2003-2013.
info@lib.ua-ru.net