Электронная библиотека Веда
Цели библиотеки
Скачать бесплатно
Доставка литературы
Доставка диссертаций
Размещение литературы
Контактные данные
Я ищу:
Библиотечный каталог российских и украинских диссертаций

Вы находитесь:
Диссертационные работы России
Технические науки
Информационно-измерительные системы

Диссертационная работа:

Ефимов Денис Валентинович. Робастное и адаптивное управление колебательными режимами нелинейных систем : дис. ... д-ра техн. наук : 05.11.16 СПб., 2006 361 с. РГБ ОД, 71:07-5/222

смотреть содержание
смотреть введение
Содержание к работе:

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 7

СПИСОК ОСНОВНЫХ СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ 17

ГЛАВА 1. ЗАДАЧИ УПРАВЛЕНИЯ КОЛЕБАНИЯМИ 18

1.1. Краткая история исследований свойств устойчивости нелинейных колебательных систем 18

1.2. Примеры задач поддержания автоколебаний 21

1 2.1. Задача о выбросе из потенциальной ямы 21

1 2.2. Задача поддержания автоколебаний маятника 22

1.2.3. Система поддержания экологического равновесия 24

1.2.4. Гашение вращений космического аппарата 25

1.2.5 Задача амортизации динамических систем 26

1.3. Виды задач управления колебаниями 28

1.3 1. Модели объектов управления 28

1.3 2. Цели управления в колебательных системах 29

1.3.3 Алгоритмы управления 32

1.3.4 Задачи управления в колебательных системах 33

1.4. Обзор существующих решений 34

ГЛАВА 2. АНАЛИЗ КОЛЕБАТЕЛЬНЫХ СИСТЕМ 37

2.1. Методы исследования колебательности и устойчивости относительно

множества 37

2 1.1. Виды колебаний 37

2.1.2. Колебания в динамических системах 38

2.1.3. Устойчивость относительно множества 42

2.1.4 Устойчивость множеств в присутствии возмущений 48

2.2. Колебательность по Якубовичу 53

2.2.1. Классические результаты 53

2.2.2. Развитие на нелинейные системы общего вида 54

2.2.3. Индексы возбудимости 60

2.2.4. Колебательность систем с запаздыванием 65

ГЛАВА 3. РОБАСТНОЕ УПРАВЛЕНИЕ КОЛЕБАНИЯМИ 74

3.1. Управляющие функции Ляпунова в задаче стабилизации относительно множества 75

3.1.1. Стабилизация относительно начала координат 15

3.1.2. Стабилизация от входа к выходу 86

3.1.3. Необходимость существования управляющих функций Ляпунова для задач стабилизации относительно множества 3.2. Робастная стабилизация относительно множества методом скоростного градиента 95

3.3. Перенос управления через интегратор в задаче стабилизации относительно множества 1 3.3.1. Робастная стабилизация относительно множества 102

3.3.2. Стабилизация от входа к выходу 105

3.3.3. Робастная стабилизация маятника с динамическим исполнительным механизмом 107

3.4. Управление генерацией и поддержанием колебаний 108

3 4.1. Синтез закона управления 109

3.4.2. Расчет системы управления колебаниями носа летательного аппарата 113

ГЛАВА 4. АДАПТИВНО-РОБАСТНОЕ УПРАВЛЕНИЕ

КОЛЕБАНИЯМИ 118

4.1. Адаптивная стабилизация от входа к выходу 119

4.1.1. Невозмущепный случай 120

4.1.2. Возмущенный случай 123

4.1.3. Адаптивно-робастная стабилизация энергии маятника с компенсацией трения 124

4.2. Адаптивные частичные наблюдатели в присутствии возмущений 126

4.2.1. Постановка задачи 128

4.2.2. Синтез адаптивного наблюдателя 131

4.2.3. Исследованиеробастных свойств 135

4.2.4. Модель брюсселятора 137

4 2.5. Модель Дуффинга 139

4.3. Адаптивно-робастная стабилизация для класса нелинейно араметризованных систем 142

ГЛАВА 5. АДАПТИВНАЯ НАСТРОЙКА НА БИФУРКАЦИЮ 150

5.1. Постановка задачи 150

5.2. Единичная относительная степень 153

5.3. Неединичная относительная степень 160

5.3.1. Случай без помехи в канале измерения 162

5.3.2 Случай с помехой в канале измерения 165

5.4. Адаптивно-робастная стабилизация нелинейных систем с оценкой производной функции выхода 167

5.4.1. Математическая формулировка задачи 169

5.4.2. Синтез адаптивно-робастной системы управления 170

ГЛАВА 6. ДИНАМИЧЕСКАЯ АДАПТИВНАЯ СИНХРОНИЗАЦИЯ 178

6.1. Постановка задачи 180

6.2. Случай системы Лурье 182

6.3. Синтез систем управления строем 1

6.3.1. Циклическая синхронизация 186

6.3.2. Синхронизация двух маятников с заданным сдвигом фаз 189

ГЛАВА 7. НЕИРОСЕТЕВАЯ СТАБИЛИЗАЦИЯ ОТ ВХОДА К ВЫХОДУ 192

7.1. Архитектура искусственных нейронных сетей 193

7.1.1. Базовый процессорный элемент 193

7.1.2. Слой базовых процессорных элементов 194

7.1.3. Статические многослойные нейронные сети 194

7.1.4. Алгоритмы обучения многослойных нейросетеи прямого действия 196

7.2. Использование нейросетеи в задачах управления 197

7.2.1. Использование статических многослойных нейросетеи в задачах управления динамическими объектами 198

7.2.2. Использование динамических многослойных нейросетеи в адаптивных системах автоматического управления 2

7.3. Этапы синтеза систем управления с многослойными нейронными сетями 202

7.4. Особенности нейросетевого управления 204

7.5. Анализ адаптивной нейросетевой системы управления 207

7.5.1 Регулярная задача 209

7.5.2. Крит ическая задача 213

ГЛАВА 8. УПРАВЛЕНИЕ РЕЗОНАНСНЫМИ РЕЖИМАМИ РАБОТЫ ВИБРАЦИОННЫХ МАШИН 222

8.1. Формальная постановка задачи 224

8.2. Алгоритм управления на основе наблюдателя 226

8.3. Нелинейный алгоритм управления на основе скоростного градиента 235

8.4. Адаптивное гашение и возбуждение вибраций 241

8.5. Управление асинхронным двигателем 249

8.6. Алгоритм "Полоска-2" 251

ГЛАВА 9. СТАБИЛИЗАЦИЯ МОМЕНТА НА ВАЛУ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 253

9.1. Постановка задачи 253

9.2. Задача объединения локального и глобального регуляторов 255

9.3. Синтез регуляторов для двигателя внутреннего сгорания 2

9.3.1. "Глобальный"регулятор 258

9.3.2. "Локальный"регулятор 260

9.3.3. Логико-командное управление двигателем 263

ЗАКЛЮЧЕНИЕ 265

СПИСОК ЛИТЕРАТУРЫ 267

ПРИЛОЖЕНИЕ 1. ОБЩИЕ СВОЙСТВА ДИНАМИЧЕСКИХ СИСТЕМ 283

П1.1. Устойчивость от входа к состоянию 286

П1.2. Геометрические свойства аффинных по управлению систем 292

П1.3. Пассивность динамических систем 295

ПРИЛОЖЕНИЕ 2. СВОЙСТВО ПРЕДЕЛЬНОЙ

НЕВЫРОЖДЕННОСТИ 299

ПРИЛОЖЕНИЕ 3. ДОКАЗАТЕЛЬСТВА 306

П3.1. Доказательства к главе 2 306

П3.2. Доказательства к главе 3 313

ПЗ.З. Доказательства к главе 4 327

П3.4. Доказательства к главе 5 336

П3.5. Доказательства к главе 6 344

П3.6. Доказательства к главе 7 348

П3.7. Доказательства к главе 8 350

П3.8. Доказательства к главе 9 356 

Введение к работе:

На современном этапе развития теории автоматического управления возрастает роль задач управления колебательными процессами функционирования нелинейных динамических объектов Это связано, прежде всего, с открытием и интенсивным развитием новых областей практических приложений управления вибрационными установками, управления техническими системами в хаотических и бифуркационных режимах, управления открытыми физическими и биологическими системами Повышение требований к качеству переходных процессов в традиционных областях применения теории синтеза нелинейных колебательных систем, таких как электротехника, робототехника и вибрационная механика, привело к необходимости разработки новых методов конструирования систем, учитывающих неопределенные условия функционирования колебательных объектов и внутренние параметрические неопределенности

Например, подобная ситуация возникает при построении резонансных вибрационных машин (И И Блехман) или манипуляционных авторезонансных систем (В И Бабицкий), функционирующих на собственной частоте рабочего механизма, что позволяет существенно снизить энергетические затраты исполнительных устройств

Эффективность работы вибрационной машины в значительной мере определяется интенсивностью колебаний рабочего органа, которая зависит от частоты возбуждения Поэтому наиболее эффективными являются резонансные машины, в которых в качестве основных рабочих режимов используются резонансные колебания исполнительных механизмов Принцип работы таких машин основан на использовании явления резонанса колебательной системы при воздействии на нее периодической вынуждающей силы При резонансе происходит резкое возрастание амплитуды колебаний при заданной вынуждающей силе, и, наоборот, любая заданная амплитуда колебаний достигается при минимальном силовом воздействии со стороны возбудителя колебаний Однако, любые внешние возмущения или отклонение значений параметров от номинальных приводят к уходу системы из резонансного режима работы, что увеличивает энергетические потери системы и делает затруднительным ее функционирование в условиях существенного изменения значений параметров (до 100% от номинальных величин) или присутствия возмущений

Другой пример - двигатели внутреннего сгорания Серьезная конкурентная борьба между различными фирмами на рынке производства двигателей внутренне го сгорания приводит к быстрому повышению требований к рабочим характеристикам двигателей (расходу топлива, максимальному крутящему моменту, кривой разгона, экологичности) Множественность режимов работы двигателя и широкий диапазон условий функционирования затрудняют заводскую настройку двигателя, обеспечивающую приемлемое качество функционирования системы для всех возможных условий работы Использование адаптивных технологий позволяет преодолеть указанный недостаток, но отсутствие теоретических результатов, применимых к проблемам управления колебательными системами, не позволяет сделать это в полной мере Поэтому проблема повышения качества функционирования систем возбуждения и поддержания желаемых колебательных режимов движения в нелинейных неопределенных динамических системах является важной и актуальной

Феномен нелинейных колебаний охватывает широкое множество возможного поведения динамических систем от периодических или гармонических колебаний до рекуррентных и хаотических движений Исследования в этой области в значительной степени опираются на достижения отечественных научных школ по изучению нелинейных колебаний, представленных работами А А Андронова, И И Блехмана, Н Н Боголюбова, П С Ланда, Г А Леонова, Ю А Митропольского, Ю И Неймарка, В В Немыцкого, Я Г Пановко и их учеников Важный и практически полезный подход к изучению сложных колебательных режимов движения основан на понятии колебательности, введенном в 1973 году В А Якубовичем Этот подход позволяет получить частотные условия колебательности для класса систем Лурье, состоящих из номинальной линейной части и нелинейной обратной связи по выходу Однако при изучении многих физических и механических процессов более естественной выглядит декомпозиция системы на две нелинейные части (например, механические системы с функцией энергии, выполняющей роль функции Ляпунова системы) Для подобных систем вопросы анализа и синтеза колебательных режимов исследованы недостаточно

Возникновение колебательных режимов движения зачастую связано с приближением значений параметров системы к точке бифуркации, достижение которой приводит к появлению колебаний и неустойчивости Задача управления бифуркациями является достаточно новым направлением теории управления (Ю В Колоколов, Е Abed, G Chen) Одна из главных проблем в этой области состоит в сложной зависимости коэффициентов закона управления от параметров объекта На практике эти параметры отличаются от используемых при аналитическом расчете закона управления В силу того, что бифуркационные или резонансные свойства системы чувствительны к малым изменениям параметров, даже малая ошибка при расчете коэффициентов регулятора может привести к значительным отклоне ниям в поведении системы Более того, система в точке бифуркации находится на границе устойчивости и малая ошибка в значениях коэффициентов может оказаться причиной неустойчивого поведения системы Для преодоления этого недостатка можно использовать методы адаптивного управления для настройки коэффициентов закона управления с целью обеспечения системе бифуркационного или резонансного режима с желаемыми свойствами, что, однако, оказывается невозможным в рамках современной теории адаптивного управления, не рассматривающей случай неустойчивого или бифуркационного желаемого режима объекта

Существующие методы стабилизации колебательных режимов движения (Л Д Акуленко, В К Асташев, В И Бабицкий, Ф Л Черноусько, А М Формаль-ский) не позволяют синтезировать системы управления в условиях существенной параметрической неопределенности и внешних возмущений Частично это связано с тем фактом, что несмотря на наличие обширной научной литературы, посвященной проблемам анализа и синтеза систем, содержащих колебательные переменные, только в последние 10-15 лет оформились конструктивные математические результаты, позволяющие исследовать устойчивость колебаний в системах с параметрической неопределенностью и внешними возмущениями Эти результаты сформулированы группой математиков (Е D Sontag, Y Wang, D Angeli) в рамках теории систем, устойчивых от входа к состоянию (mputo-state stable) или от входа к выходу (inputo-output stability), которая является частным случаем теории систем, устойчивых относительно множества

Одновременно серьезное развитие получили методы теории управления, позволяющие синтезировать алгоритмы управления для нелинейных систем в условиях неопределенности их моделей (А А Колесников, А А Красовский, ПД Крутько, И В Мирошник, В О Никифоров, А А Первозванский, А Л Фрадков, Р A loannou, A Isidon, D Hill, Р Kokotovic, К Narendra, R Ortega, A S Morse, A Teel, J С Willems) Эти методы можно разделить на группы методов робастного и адаптивного управления, направленные на различные способы компенсации неопределенности модели объектов Для стабилизации нелинейных систем в присутствии внешних возмущений используются методы робастного управления (метод управляющих функций Ляпунова, методы пассификации, разработанные в лаборатории управления сложными системами ИПМаш РАН, метод переноса управления через интегратор, метод аналитического конструирования агрегированных регуляторов) Для стабилизации систем в условиях параметрической неопределенности используются методы адаптивного управления, предлагающие непосредственную настройку коэффициентов регулятора (прямой подход к построению адаптивных систем управления) или направленные на предварительную оценку неизвестных параметров модели объекта (идентификационный подход к построению адаптив ных систем) Распространение и обоснование методов робастного и адаптивного управления для задач возбуждения и поддержания колебательных режимов открывает возможности получения требуемых в приложениях законов управления колебательными системами, гарантирующих высокое качество системы в условиях сигнальной и параметрической неопределенности модели объекта

Актуальность темы диссертационной работы определяется необходимостью развития методов робастного и адаптивного управления колебательными режимами объектов различной физической природы в условиях неполноты априорной и текущей информации об объекте и внешних условиях функционирования

Целью работы ставится повышение качества и помехоустойчивости систем управления колебательными режимами в условиях неопределенности параметров объекта, внешних возмущений, нелинейности и неопределенности результатов измерений

Для достижения цели в работе решается следующий комплекс задач

1 Установить условия наличия свойства колебательности по Якубовичу для динамических систем с нелинейной номинальной частью

2 Развить существующие методы робастного управления нелинейными системами и предложить новые алгоритмы для решения задачи синтеза законов возбуждения и поддержания колебательных режимов в неопределенных нелинейных системах В частности, следует развить

- метод управляющих функций Ляпунова,

- метод стабилизации по скоростному градиенту относительно множества в условиях внешних возмущений,

- метод переноса управления через интегратор,

- метод аналитического конструирования агрегированных регуляторов

3 Развить методы адаптивного управления, существующие в рамках прямого и идентификационного подходов к синтезу адаптивных систем, на задачу стабилизации желаемых колебательных режимов в условиях параметрической и сигнальной неопределенности

4 Разработать и обосновать алгоритмы адаптивной настройки системы на желаемый вид бифуркации в условиях внешних возмущений и параметрической неопределенности модели объекта

В ходе решения указанных задач в диссертационной работе получены следующие основные результаты

1 Получено развитие необходимых и достаточных условий для наличия свойства колебательности по Якубовичу у динамических систем с номинальной нелинейной частью и нелинейных систем с запаздыванием 

2 Развиты методы робастного управления нелинейными системами относи ю

тельно множества

2.1 Развит метод управляющих функций Ляпунова (предложена формулировка управляющей функции Ляпунова для задач стабилизации нелинейной аффинной по управлению системы относительно множества и от входа к выходу, разработаны необходимые и достаточные условия стабилизируемости от входа к выходу в терминах существования управляющей функции Ляпунова, обоснован закон управления, обеспечивающий по известной управляющей функции Ляпунова стабилизацию системы от входа к выходу)

2.2 Методы переноса управления через интегратор и аналитического конструирования агрегированных регуляторов обобщены на задачу стабилизации относительно множества и от входа к выходу Проведено аналитическое сравнение этих методов

2.3 Установлены условия робастности по отношению к интегрально ограниченным возмущениям для аффинных по управлению нелинейных систем, стабилизированных относительно множества методом скоростного градиента

2.4 Разработан алгоритм управления, гарантирующий при выполнении ряда условий для замкнутой нелинейной системы общего вида наличие свойства колебательности по Якубовичу

3 Развиты методы адаптивного управления нелинейными системами относительно множества

5 / Предложены условия применимости алгоритмов адаптации, синтезированных по методу скоростного градиента, в задачах стабилизации системы относительно множества и от входа к выходу

3 2 Установлены новые условия применимости и упрощена структура частичных адаптивных наблюдателей для нелинейных систем с зависящей в явном виде от времени правой частью модели, приводимой к канонической наблюдаемой форме по выходу, в присутствии внешних возмущений и помех в канале измерения

3 3 Предложены алгоритмы адаптивно-робастного управления для класса нелинейно параметризованных систем (случай, когда модель объекта зависит от вектора неизвестных параметров нелинейным образом), допускающих построение частичных адаптивных наблюдателей

3 4 Разработаны этапы синтеза адаптивных нейросетевых систем управления

для задачи стабилизации нелинейной аффинной по управлению системы от

входа к выходу Предложена модификация алгоритма обучения многослойных

нейронных сетей, гарантирующая совмещения в одном времени процессов

обучения нейросети и управления динамической системой для данной задачи

4 Предложена новая постановка задачи адаптивной настройки нелинейной

и

системы на желаемый тип бифуркации Разработаны алгоритмы робастно-адаптивного управления, решающие задачу настройки на бифуркацию в присутствии внешних возмущений и помех в канале измерения Получены различные решения для случаев единичной и неединичной относительной степени (относительная степень считается от измеряемого выхода к вектору неизвестных параметров) На основе полученных новых алгоритмов адаптивного управления синтезирован новый алгоритм адаптации для нелинейной системы в задаче стабилизации ее относительно положения равновесия в начале координат и разработан алгоритм робаст-но-адаптивного управления для задачи адаптивной динамической синхронизации двух нелинейных систем

Результаты диссертации нашли применение при решении задачи стабилизации момента на валу двигателя внутреннего сгорания, где разработан гибридный робастно-адаптивный алгоритм управления моментом двигателя в присутствии внешних возмущений, и при синтезе робастно-адаптивного алгоритма резонансного управления ударно-вибрационной дробилкой, обеспечивающего колебания вибрационной машины на собственной частоте с заданной амплитудой с минимальными энергетическими затратами Применение методов синтеза управлений колебаниями, развитых в диссертационной работе, гарантирует работоспособность синтезированных систем в условиях существенной параметрической неопределенности, внешних возмущений и неполной измерительной информации об управляемом объекте, что приводит к повышению качества реализации требуемых целей управления Результаты диссертации вошли в монографии [53], [54], рекомендованные УМО по образованию в области радиотехники, электроники, биомедицинской техники и автоматизации для студентов, обучающихся по специальностям «Автоматизация и управление», «Управление и информатика в технических системах», а также УМО по специальности «Прикладные математика и физика» Результаты диссертации внедрены в НПО «Механобр-Техника», в разработки по Федеральной целевой программе «Интеграция», в НИР и учебный процесс кафедры автоматики и процессов управления Санкт-Петербургского государственного электротехнического университета «ЛЭТИ», в разработки Санкт-Петербургского Государственного Технического Университета (ЛИТМО) для корпорации «General Motors» по теме № 77500 "Адаптивное гибридное управление силовыми системами автомобиля"

Практическая значимость проделанной работы заключается в создании методов расчета систем управления колебательными режимами функционирования машин, модель которых содержит параметрическую неопределенность и внешние возмущающие воздействия в условиях неопределенности результатов измерения Применение разработанного аппарата гарантирует реализацию заданной цели управления в условиях широкого разброса возможных значений параметров моде ли объекта при влиянии внешних возмущений

Научная новизна полученных результатов состоит в расширении методов синтеза управления колебательными режимами движения на классы систем, модель которых содержит существенную параметрическую неопределенность и внешние возмущающие входы

Диссертационная работа выполнена в лаборатории «Управления сложными системами» Института проблем машиноведения РАН в период с 2001-2006 гт в соответствии с планами научно-исследовательских работ (№ 01 200 201870), при поддержке грантов РФФИ (№№ 02-01-00765, 03-01-06373, 05-01-00869), грантов Фонда содействия отечественной науки 2004-2005, программы Президиума РАН № 19 «Управление механическими системами» (проект 1 4), по проектам федеральной целевой программы «Интеграция» (№ Б-0026), российско-нидерландской исследовательской программы NWO-РФФИ 047 011 2004 004, в рамках научного договора между Санкт-Петербургским Государственным Техническим Университетом (ЛИТМО) и корпорацией «General Motors» по теме № 77500

Результаты работы доложены и одобрены на 22 научных конференциях и симпозиумах, в том числе 15-ый и 16-ый Всемирные конгрессы международной федерации по автоматическому управлению (1FAC) (Испания, 2002, Чехия, 2005), 41-ая, 43-ая и 44-ая Конференции Института инженеров по электротехнике и электронике (ШЕЕ) по принятиям решений и управлению CDC 02(04, 05) (США, 2002, США, 2004, Испания, 2005), на 1-ой и 3-ей Всероссийских научных конференциях "Управление и информационные технологии" УИТ03(05) (Санкт-Петербург, 2003, 2005), Симпозиум IFAC по нелинейным системам управления NOLCOS 04 (Германия, 2004), Конференция Российской северо-западной секции IEEE (Санкт-Петербург, 2004), Конференция ШЕЕ по прикладным задачам управления ССА 03 (Турция, 2003), Европейская конференция по управлению ЕСС 03 (Англия, 2003), 2-ая Международная конференция по проблемам управления (Москва, 2003), 4-ая Международная конференция «Средства математического моделирования» MATHMOD 03 (Санкт-Петербург, 2003), 4-ая Азиатская конференция по управлению AS СС 02 (Сингапур, 2002), конференции "Навигация и управление движением" (Санкт-Петербург, 2000, 2001), Международная конференция по нейрокомпьютерам и их применению (Москва, 2000), Международная конференция по нейронным сетям и искусственному интеллекту (Брест, 1999), 6-ая и 7-ая Международная студенческая олимпиада по автоматическому управлению ВОАС 98(99) (Санкт-Петербург, 1998, 1999), Международная научно-техническая конференция "Нейронные, реляторные и непрерывно-логические сети" (Москва, 1998), 2-ой и 3-ий Международный симпозиум по интеллектуальным системам управления INELS 96(98) (Санкт-Петербург, 1996, Псков, 1998) Обсуждения результатов дис сертационной работы успешно прошли на Городском семинаре по теории управления, на институтском семинаре ИПМаш РАН, на семинаре ИПУ РАН, на семинаре университета SUPELEC (Франция)

Автором опубликовано по теме диссертации 62 печатные работы, в том числе 5 монографий и учебных пособия, 2 главы в книгах и 13 журнальных статей Все результаты, составляющие основное содержание диссертационной работы, получены автором самостоятельно

Диссертация содержит девять глав и три приложения

В первой главе приводится краткая историческая справка по исследованию свойств устойчивости нелинейных колебательных динамических систем Дается общая характеристика и примеры задач управления колебаниями Очерчен круг проблем, рассматриваемых в работе, и приводится краткий обзор существующих решений в этой области

Во второй главе рассматриваются различные математические формулировки понятий колебаний и колебательности, вводятся определения нескольких типов устойчивости колебательных динамических систем (в том числе устойчивости от входа к выходу), формулируются необходимые и достаточные условия используемых в дальнейшем типов устойчивости, приводится ряд вспомогательных свойств

В третьей главе рассматриваются алгоритмы управления, позволяющие, с использованием результатов предыдущих глав, робастно стабилизировать выбранное подмножество пространства состояния нелинейной динамической системы Рассматриваются методы управляющих функций Ляпунова, пассификации и переноса управления через интегратор, а также метод аналитического конструирования агрегированных регуляторов

В четвертой главе предлагается развитие метода скоростного градиента на задачу адаптивной стабилизации системы относительно множества в рамках прямого подхода к синтезу адаптивных систем управления Далее представлены результаты, позволяющие синтезировать на базе метода скоростного градиента адаптивные наблюдатели возмущенного нелинейного объекта, реализующие стратегию идентификационных методов адаптивного управления

Задача адаптивной настройки на бифуркацию ставится и решается в пятой главе Управление бифуркациями является относительно новым направлением теории автоматического управления, посвященным синтезу регуляторов, гарантирующих желаемые свойства бифуркационных режимов для данной нелинейной системы (под желаемыми свойствами может пониматься тип бифуркации, устойчивость или неустойчивость образуемых после бифуркации предельных циклов, координаты новых возникающих положений равновесия) Регуляторы, применяющиеся для управления бифуркационными режимами, основываются на предполо жении о доступности полной сигнальной и параметрической информации о модели системы Такое допущение связано со сложностью аналитического расчета бифуркационных управлений, требующего полной информации о системе С другой стороны, такое предположение серьезно усложняет практическое применение полученных алгоритмов управления в силу того, что реальные объекты управления содержат параметрическую и сигнальную неопределенность в своем описании Одним из возможных путей преодоления указанного недостатка может служить использование методов адаптивного управления для оценки в реальном масштабе времени текущих параметров модели управляемой системы или прямой подстройки параметров бифуркационных управлений 

В шестой главе приводится краткий обзор существующих постановок задач и решений в области синхронизации динамических систем Ставится новая задача динамической синхронизации нелинейных объектов Примером объектов, находящихся в динамической синхронизации друг с другом, могут выступать планеты нашей галактики, совершающие колебательные движения вокруг друг друга Солнце может рассматриваться в качестве лидера этой системы Планеты координируют свое движение по отношению к солнцу с колебательной ошибкой синхронизации Спутники в свою очередь совершают аналогичные колебательные движения вокруг планет Во всех случаях расстояние между этими объектами не стремится к константе, а динамически меняется, подчиняясь некоторому дифференциальному уравнению, чьи решения - колебательные функции времени

В седьмой главе приводится краткий обзор и основные направления синтеза нейросетевых систем управления динамическими объектами Предлагаются этапы синтеза систем управления колебаниями на базе искусственных нейросетей Обосновываются условия применимости обучаемых параллельно процессу управления многослойных нейронных сетей в рассматриваемых задачах

В восьмой главе представлены несколько решений задачи резонансного возбуждения колебаний с заданной амплитудой вибрационных дробилок Первое решение базируется на алгоритмах синтеза адаптивных наблюдателей, а второе решение основано на применении алгоритма скоростного градиента в конечной форме Оба решения получены в предположении, что для измерения доступна только координата угла отклонения маятника и в каналах измерения и управления присутствуют помехи, собственная частота маятника предполагается неизвестной Полученные решения развиваются на задачу стабилизации и гашения колебаний в двухмассовой маятниковой системе

В девятой главе представлено решение задачи стабилизации желаемого значения момента, развиваемого двигателем внутреннего сгорания, в присутствии параметрической и сигнальной неопределенностей модели двигателя Решение осно вано на использовании двух регуляторов, один из них обеспечивает (глобальную) ограниченность переменных двигателя, другой гарантирует (локальное) регулирование значения момента двигателя Полученный локальный регулятор включает в себя настраиваемый генератор задающего сигнала и обратную связь, улучшающую качество переходных процессов в системе Предполагается доступными для непосредственного измерения значения скорости вращения вала двигателя и давления во впускном коллекторе Алгоритм логико-командного управления обеспечивает переключение между локальным и глобальным регуляторами в присутствии возможных внешних возмущений

В первом приложении приведены необходимые сведения из функционального анализа и теории дифференциальных уравнений, собраны основные результаты теории устойчивых от входа к вектору состояния систем, сформулированы определения некоторых полезных геометрических свойств динамических систем, представлены определения и базовые свойства диссипативных по Виллемсу систем и пассивных систем

Во втором приложении представлен краткий обзор и ряд последних достижений в области исследования свойства предельной невырожденности функций вещественной переменной, используемые в адаптивной теории управления для обоснования идентифицирующих свойств алгоритмов оценивания значений неизвестных параметров стабилизируемых объектов

В третьем приложении собраны доказательства результатов для всех глав

Особенностью изложения является использование результатов теории устойчивости динамических систем от входа к выходу для анализа и синтеза систем управления нелинейными колебательными объектами К числу особенностей изложения необходимо отнести и обилие сокращенных терминов и аббревиатур различных свойств устойчивости динамических систем, используемых в тексте Эта особенность связана с материалом диссертации - свойство колебательности динамических систем требует учета всего возможного многообразия типов устойчивости, присущих этому типу объектов Автор извиняется за возможное неудобство и для упрощения знакомства с материалом диссертационной работы все используемые сокращения собраны и расшифрованы в конце данного предисловия

В заключение автор хотел бы поблагодарить заведующего лабораторией управления сложными системами, Института проблем машиноведения Российской академии наук, профессора А Л Фрадкова за мотивировку и неоценимую помощь, оказанную в процессе написания этой работы Автор также желает выразить глубокую признательность своей семье и близким за поддержку и участие 

Подобные работы
Грибков Алексей Николаевич
Информационно-управляющая система динамическими режимами в многосекционных сушильных установках
Кучмин Андрей Юрьевич
Управление зеркальной системой радиотелескопа миллиметрового диапазона
Малафеев Алексей Вячеславович
Оптимизация эксплуатационных режимов систем электроснабжения промышленных предприятий с собственными источниками электроэнергии
Ожегов Андрей Николаевич
Развитие методов расчета несинусоидальных режимов систем электроснабжения предприятий
Николаенко Виктор Григорьевич
Коррекция режимов систем электроснабжения с несимметричными элементами
Рындина Ирина Евгеньевна
Методы компьютерного моделирования для проектирования и анализа режимов систем электроснабжения
Осипов Дмитрий Сергеевич
Учет нагрева токоведущих частей в расчетах потерь мощности и электроэнергии при несинусоидальных режимах систем электроснабжения
Ван Бяо
Разработка и исследование методов адаптивной координационной оптимизации стационарных режимов систем управления
Шевченко Вадим Валерьевич
Нейросетевое моделирование режимов систем электроснабжения промышленных предприятий
Алексеева Татьяна Леонидовна
Численные методы нахождения корней систем нелинейных алгебраических уравнений и их применение для расчета установившихся режимов электроэнергетических систем

© Научная электронная библиотека «Веда», 2003-2013.
info@lib.ua-ru.net