Электронная библиотека Веда
Цели библиотеки
Скачать бесплатно
Доставка литературы
Доставка диссертаций
Размещение литературы
Контактные данные
Я ищу:
Библиотечный каталог российских и украинских диссертаций

Вы находитесь:
Диссертационные работы России
Технические науки
Металлургия техногенных и вторичных ресурсов

Диссертационная работа:

Зайнуллин Лик Анварович. Разработка и внедрение ресурсосберегающих, экологичных и взрывобезопасных систем припечной грануляции металлургических шлаков : дис. ... д-ра техн. наук : 05.16.07 Екатеринбург, 2006 168 с. РГБ ОД, 71:06-5/562

смотреть содержание
смотреть введение
Содержание к работе:

Перечень условных обозначений 7

Общая характеристика работы 10

1 Аналитический обзор известных способов и устройств уборки и переработки доменных шлаков 20

1.1 Анализ технологий централизованной грануляции 22

1.2 Существующие технологии припечной грануляции

1.2.1 Системы диспергации расплавов 34

1.2.2 Теоретические основы диспергации 37

1.2.3 Охлаждение частиц расплавов 40

1.2.4 Теоретические основы эрлифта

1.3 Технология припечной грануляции «ВНИИМТ - Гипромез» 45

1.4 Цель и задачи работы 47

2 Диспергирование шлакового расплава 50

2.1 Взрывобезопасный способ и устройство получения качественных гранул в технологии мокрой грануляции 50

2.2 Струйная диспергация шлакового расплава 53

2.3 Механическая диспергация шлакового расплава 59

2.4 Выводы 64

3 Теплофизические и газодинамическая задачи процесса грануляции 67

3.1 Охлаждение частиц расплава в паровоздушной и жидкой средах 68

3.2 Траектория полёта частиц в паровоздушной среде 81

3.3 Теплоотдача между водяными струями и пластиной при её нагревании струёй расплава металла

3.3.1 Одиночная струя 87

3.3.2 Группа струй 90

3.4 Выводы 91

4 Теория и практика применения эрлифта в системах при печной грануляции шлаков 93

4.1 Двухфазный изотермический и неизотермический эрлифт 93

4.2 Трёхфазный неизотермический эрлифт 100

4.3 Методика инженерного расчёта трёхфазного неизотермического эрлифта 103

4.4 Выводы 107

5 Новые энергоэффективные и экологичные процессы грануляции 108

5.1 Технология сухой грануляции шлакового расплава 108

5.2 Полусухая грануляция с использованием части физического тепла шлака для уменьшения его влажности 113

5.3 Технология приготовления нейтрализующей суспензии из порошкообразного известняка 117

5.4 Выводы 125

6 Внедрение разработанных грануляционных систем 128

6.1 Новизна технических и технологических решений 128

6.2 Технологические схемы внедрённых грануляционных систем 129

6.3 Технико-экономические показатели работы промышленных припечных грануляционных систем 138

6.4 Выводы 140

Заключение 141

Список использованных литературных источников 145

Приложение А Таблица АЛ - Справка о практическом использовании результатов научно-исследовательских работ, с которыми связана докторская диссертация Зайнуллина Л. А 1  

Введение к работе:

Ключевые слова: грануляционная система, технология грануляции, мокрая грануляция, полусухая грануляция, сухая грануляция, взрывобезопас-ность, экологичность, энергоэффективность, диспергация, охлаждение, эр-лифтное транспортирование, обезвоживание, сушка, гранулированный шлак, физическое тепло, влажность, размер частиц, теория, эксперимент, практика, внедрение.

Основные определения

Грануляция - процесс получения твердых гранул из расплава путем первоначального дробления (диспергирования) расплава шлака на отдельные жидкие или частично жидкие капли и последующего их охлаждения, при котором осуществляется превращение жидких или частично жидких капель в твердые частицы - гранулы. Устройство, в котором осуществляются эти процессы, называется гранулятором. В технике различают три вида грануляции: мокрую, полусухую и сухую.

Мокрая грануляция - это процесс получения твердых гранул при избыточном количестве влаги. Типично мокрым процессом является бассейновый способ, когда шлак из ковша сливается в большую емкость с водой. Другими видами мокрой грануляции являются желобной и гидрожелобной. В первом из них процесс дробления и охлаждения происходит при совместном движении шлака и воды по длинному желобу. При гидрожелобном способе дробление шлака осуществляется острыми струями воды в желобе, из которого смесь поступает в емкость с водой. Получаемый этим способом граншлак, как правило, имеет избыточную влажность. Полусухая грануляция - это такой процесс получения гранул, когда их состояние по влажности можно считать условно сухим. Практика работы с гранулированным доменным шлаком показывает, что состояние «условно сухой» соответствует влажности 6 %; при этой влажности шлак еще не смерзается, в то же время остается ограниченно подвижным, что исключает утечку его через неплотности вагонов при транспортировке.

Сухая грануляция - технология, при которой процессы кристаллизации и охлаждения шлака осуществляются без использования жидкости (влаги).

Грануляционной системой будем называть цепь располагаемых друг за другом аппаратов, в которых последовательно реализуются процессы диспергирования, охлаждения, транспортировки, обезвоживания, сушки и складирования гранулированного шлака, а также производится нейтрализация вредных выбросов парообразных и газообразных продуктов грануляции.

Актуальность

В России ежегодно производится около 50 млн. т металлургических шлаков. Сегодня металлургические шлаки относятся к важным вторичным сырьевым ресурсам. Жидкие шлаки обладают огромным теплоэнергетическим потенциалом, который, к сожалению, мало используется по ряду объективных причин, в том числе и по причине сложности реализации разработанных способов на практике. Переработка жидких шлаков осуществляется практически в полном объёме. Основная часть шлаков перерабатывается в гранулированный шлак и используется в строительной индустрии.

Припечная грануляция доменного шлака - наиболее прогрессивная технология шлакопереработки, т.к. позволяет отказаться от применения шлако-возных ковшей и энергоэффективным и экологичным образом превратить весь доменный шлак в качественный продукт для промышленности строительных материалов.

В середине 60-х годов прошлого столетия во ВНИИМТ была разработана и внедрена первая в СССР грануляционная система, перерабатывающая доменный шлак непосредственно у доменной печи небольшого объема (395 м ). В этой конструкции был удачно решен ряд вопросов, сдерживавших промышленное применение технологии припечной грануляции, а именно: локализация вредных паро- и газообразных выбросов, эрлифтный способ транспортировки гранулированного продукта, использование части физического тепла шлака для уменьшения его влажности. Однако для уверенного переноса этой технологии на вновь проектируемые доменные печи большого объема (2000 ... 5000 м ) необходимо было создать теоретическую базу процесса грануляции, позволяющую принимать научно обоснованные технические решения при конструировании грануляционных систем припечной переработки больших масс шлака.

Цель работы

Исследование и разработка научно обоснованных ресурсосберегающих, взрывобезопасных и экологичных технологий и технических решений мокрых, полусухих и сухих способов припечной грануляции для печей со значительным выходом шлака в черной и цветной металлургии.

Научная новизна

1 Исследованы теоретическими и экспериментальными методами явления диспергации шлакового расплава, охлаждения частиц шлака воздухом и водой, удаления граншлака эрлифтом и обезвреживания парогазовых выбро 13

сов. Полученные результаты обеспечили развитие теории процессов формирования гранулированного шлака для мокрых, полусухих и сухих способов его получения.

2 Установлены закономерности, определяющие среднемассовый размер гранул шлака при использовании для дробления шлаковых струй энергии воды и воздуха, механической энергии. Полученные зависимости учитывают параметры распыливающих сред: для мокрых и полусухих способов - расходы и скорости воды и воздуха, углы атаки потоков, теплофизические параметры - температуры, плотность, вязкость и поверхностное натяжение шлаков; для сухих способов - наряду с теплофизическими характеристиками шлакового расплава, число оборотов механического (барабанного) дисперга тора и скорость удара WyR, м/с. Обобщенные данные, представленные в виде формул, обеспечивают возможность расчета элементов устройств, обеспечивающих эффективную работу диспергаторов.

3 Математически описаны процессы охлаждения высокотемпературной частицы сферической формы в условиях сложного теплообмена при учете явлений теплопроводности (внутренняя задача), конвективного и лучистого теплообмена (внешняя задача) между частицей и охлаждающей паровоздушной средой, а также при охлаждении частицы в водном бассейне. Математические модели этих процессов использованы для расчета времени затвердевания частицы после распыления струи шлакового расплава. Модели также явились теоретической базой для экспериментального определения коэффициентов теплоотдачи - необходимых параметров для анализа температурных полей при формировании из частицы расплава шлака твердой гранулы.

4 Предложена методика расчета траектории полета частицы шлакового расплава, основанная на решении задачи движения частицы в газовой среде с учетом размера частицы, сопротивления среды, начальной скорости частицы и угла наклона вектора этой скорости к горизонту. Методика позволяет опре 14

делять время полета частицы, соответствующее необходимому времени охлаждения частицы в полете, и, тем самым, выбирать условия организации движения диспергированной струи шлакового расплава, которые гарантируют, с одной стороны, образование твердой корочки на охлаждаемой частице и, с другой - возможность определения размеров надводной части грануляционной системы.

5 Определены в критериальной форме зависимости между интенсивностью теплообмена при высоких плотностях тепловых потоков (более 10,0 МВт/м ), достигаемых в результате струйного охлаждения водой металлической пластины, нагреваемой расплавом металла, и другими теплофизи-ческими характеристиками: теплопроводностью, вязкостью и температуропроводностью охлаждающей среды, скоростью среды на срезе сопла, диаметра сопла и расстояния от среза сопла до охлаждаемой поверхности.

6 Изучены особенности теплофизических процессов между твердыми частицами (гранулами), охлаждающей водой и образующимся водяным паром в условиях, отражающих механическую и тепловую работу эрлифта. Установленные зависимости дополнили теорию эрлифта, распространив ее на трехфазные эрлифтные системы (твердые частицы, жидкость и газообразная среда), для которых свойственны неизотермические процессы.

7 Систематизированы укрупненные показатели работы и основные режимные параметры известных систем припечной грануляции шлака, сравнение которых позволяет в зависимости от конкретных условий выбирать ту или иную технологию получения гранулированного шлака.

Таким образом, основным научным итогом диссертационной работы является создание методологических основ для решения актуальной научно-технической проблемы, связанной с разработкой и внедрением методов комплексного исследования теплофизических процессов в системах грануляции высокотемпературных жидких шлаков, обеспечивающих оптимизацию элементов их конструкций и режимов работы, улучшение экологической обстановки и качества гранулированного шлака.

Практическая ценность

1 Разработаны инженерные методики расчета процессов диспергации расплава, пневмогидравлической транспортировки и обезвоживания получаемого граншлака.

2 Определены и обоснованы рациональные параметры установок мокрой, полусухой и сухой припечной грануляции металлургических шлаков, конструкций и режимов работы их отдельных элементов, обеспечивающих принятие научно обоснованных решений при создании технологий получения качественной продукции.

3 Разработаны принципы конструирования новых установок припечной грануляции шлаков в широком диапазоне расходов шлака, их свойств, а также особенностей компоновки печных агрегатов в технологиях производства черных и цветных металлов.

4 Предложены рекомендации по обеспечению взрывобезопасности грануляционных систем, основанные на устранении причин взрывов при грануляции шлакометаллических расплавов мокрыми и полусухими способами.

5 Разработаны новые способы управления в технологиях мокрой и полусухой грануляции, позволяющие целенаправленно влиять на качество гранулированного шлака и его влажность.

6 Предложен новый способ приготовления известняковой суспензии для нейтрализации парогазовых выбросов.

Таким образом, основным итогом диссертационной работы в практическом плане является создание научной базы для проектирования, сооружения и эксплуатации энергоэффективных, взрывобезопасных и экологичных систем припечной грануляции металлургических шлаков черной и цветной металлургии.

Реализация результатов работы

Результаты выполненных расчетно-теоретических, экспериментально-лабораторных и промышленных исследований позволили внедрить в практику проектирования и производства новые конструкции, режимы работы, приемы управления процессами в установках мокрого, полусухого и сухого способов припечных грануляционных систем ВНИИМТ. 

Различные модификации грануляционных систем конструкции ВНИИМТ, реализующих мокрый способ припечной переработки доменных шлаков, внедрены на трех крупнейших печах бывшего СССР и печи Индии:

- завод «Криворожсталь», доменная печь № 9 объемом 5000 м3,1975 г.;

- Новолипецкий металлургический комбинат, доменная печь № 6 объемом 3200 м3, 1978 г.;

- Череповецкий металлургический комбинат, доменная печь № 5 объемом 5580 м3,1986 г.;

- металлургический завод в г. Бхилаи, доменная печь объемом 2000 м , 1988 г.

Опыт заводов черной металлургии перенесен на предприятия цветной металлургий, для которых проблема переработки отвальных шлаков имеет первостепенное значение. Припечная грануляция таких шлаков реализована в плавильном цехе № 1 Надеждинского металлургического завода ЗФ ОАО «ГМК «Норильский никель» установкой двух линий: первая линия -в 1998 г., вторая - в 2005 г. Результаты работы используются в учебном процессе ГОУ ВПО «УГТУ - УПИ» в курсах «Новые технологии в металлургии» и «Элементы безотходных технологий».

Суммарный годовой экономический эффект по пяти объектам внедрения в ценах 2004 года составил 5,2 млн. долларов США.

Личный вклад автора

Личный вклад автора заключается в постановке задач исследований, их планировании и организации; в проведении экспериментов, подтверждающих разрабатываемые гипотезы и определяющих дальнейшее направление исследований; разработке теоретических положений и обобщении экспериментальных данных; подготовке технологических заданий и участии в разработке технических решений при проектировании промышленных припечных грануляционных систем; участии в пуско-наладочных работах при внедрении припечных грануляционных систем.

Результаты, выносимые на защиту

На защиту выносятся следующие основные положения диссертационной работы:

- комплексное описание взаимосвязанных процессов тепловой обработки высокотемпературной струи жидкого шлака, включающее диспергацию, охлаждение частиц шлака в воздухе и воде, удаление шлака эрлифтом, обезвоживание шлака и обезвреживание парогазовых выбросов;

- методика и результаты экспериментального изучения дробления шлакового расплава водогазоструйными и механическими диспергаторами, позволившие установить новые способы воздействия на качество и влажность гранулированного продукта;

- теоретические положения и методика расчета трехфазного эрлифта, учитывающие наличие твердой фазы в перемещаемой среде и неизотермич-ность процесса;

- математическая модель процессов охлаждения отдельных частиц шлака в жидкой и парогазовой средах и результаты экспериментальных исследований этого процесса в неподвижной и движущейся жидкой среде, обработанные в соответствии с требованиями теории подобия;

- результаты анализа причин и механизмов взрывов при мокрой грануляции шлакометаллических расплавов, а также рекомендации, обеспечивающие взрывобезопасную работу грануляционных систем;

- энергоэффективные и экологичные модификации припечных систем, реализующих взрывобезопасный мокрый способ грануляции металлосодер-жащих шлаков доменных печей большого объема, дополненный нейтрализацией парогазовых выбросов суспензией из тонкоизмельченного известняка;

- новые технологические схемы грануляционных систем для процессов полусухой и сухой переработки жидких шлаков, способные обеспечить более эффективное использование материальных и энергетических ресурсов при сниженном техногенном давлении на окружающую среду.

Достоверность результатов

Достоверность результатов подтверждается точностью и тарировкой всех средств измерений, использованием современных компьютеров и программных средств для обработки данных и проведения численных расчетов, удовлетворительным согласованием расчетных и экспериментальных данных, сопоставлением некоторых результатов с данными других исследований, соответствием полученных результатов современным физическим представлениям, а также широким использованием результатов во внедрённых промышленных объектах.

Апробация работы

Основные материалы диссертационной работы опубликованы в 22 статьях, в 47 авторских свидетельствах СССР на изобретения, трёх патентах Российской Федерации, трёх зарубежных патентах; доложены и обсуждены на одной региональной конференции (VIII научно-техническая конференция ученых и специалистов Урала «Проблемы теплотехники металлургических процессов и агрегатов», Свердловск, 1982 г.) и трёх международных конференциях: международный симпозиум ЮНЕП «Окружающая среда и зо-лошлаковые отходы», Донецк, 1983 г.; 8 международная конференция доменщиков «ВИТКОВИЦЕ 1989», г. Острава, Чехословакия, 1989 г.; международная конференция «Теплотехника и энергетика в металлургии», Украина, Днепропетровск, 2002 г.

Материалы диссертации опубликованы в журнале «Сталь» и в тематических сборниках научных трудов, выпущенных издательством «Металлургия».  

Подобные работы
Задиранов Александр Никитович
Исследование, разработка и внедрение технологий переработки никелевых и медных техногенных отходов с получением готовой металлопродукции
Шрамко Михаил Семенович
Разработка и внедрение технологии производства электростали с использованием отвального шлака металлического марганца
Абакаров Абакар Расулович
Разработка и внедрение системы контроля за состоянием плотины Чиркейской ГЭС по данным натурных наблюдений
Киндер Николай Владимирович
Разработка и внедрение автоматизированной системы предупреждения травматизма в сельскохозяйственном производстве
Кутузов Герман Олегович
Разработка и внедрение эффективной системы очистки газов закрытых ферросплавных печей
Корчашкин Николай Алексеевич
Повышение эффективности оперативного управления мелкосерийным и единичным производством путем разработки и внедрения автоматизированной системы сбора и обработки производственной информации
Усачев Евгений Юрьевич
Разработка и внедрение мобильных рентгенотелевизионных систем для промышленной дефектоскопии и антитеррористической диагностики
Черкасский Владимир Наумович
Разработка и внедрение интегрированной автоматизированной системы управления технологическими процессами газотранспортного предприятия
Рамазанов Роберт Галимьянович
Создание и внедрение трехмерной информационно-аналитической системы разработки нефтяных месторождений : На примере ТПП "Когалымнефтегаз"
Кутепов Максим Владимирович
Разработка приборов для определения показателей системы гемостаза и их внедрение в клиническую практику

© Научная электронная библиотека «Веда», 2003-2013.
info@lib.ua-ru.net