Электронная библиотека Веда
Цели библиотеки
Скачать бесплатно
Доставка литературы
Доставка диссертаций
Размещение литературы
Контактные данные
Я ищу:
Библиотечный каталог российских и украинских диссертаций

Вы находитесь:
Диссертационные работы России
Географические науки
Физика атмосферы и гидросферы

Диссертационная работа:

Ермаков Станислав Александрович. Динамика гравитационно-капиллярных волн в океане в присутствии пленок поверхностно-активных веществ : диссертация ... доктора физико-математических наук : 25.00.29 / Ермаков Станислав Александрович; [Место защиты: Институт прикладной физики РАН]. - Нижний Новгород, 2008. - 316 с. : 19 ил.

смотреть содержание
смотреть введение
Содержание к работе:

Введение 5

ГЛАВА 1. Линейные гравитационно-капиллярные волны на поверхности воды, покрытой пленкой поверхностно-активного вещества (ПАВ) 27

1.1. Введение 27

1.2. Теория затухания гравитационно-капиллярных волн на поверхности воды, покрытой упругой пленкой 31

1.2.1. Гравитационно-капиллярные волны и волны Марангони 31

1.2.2. Коэффициент затухания гравитационно-капиллярных волн 37

1.3. Лабораторные исследования затухания гравитационно-капиллярных волн 41

1.3.1. Затухание волн в бассейне конечных размеров 41

1.3.2. Метод параметрически возбуждаемых волн 44

1.3.3. Измерения коэффициента затухания гравитационно-капиллярных волн 45

1.4. Лабораторные исследования характеристик мономолекулярных пленок на поверхности воды методом параметрически возбуждаемых волн 49

1.4.1. Коэффициент поверхностного натяжения 49

1.4.2. Коэффициент затухания волн и динамическая упругость пленок 51

1.5. Выводы к главе 1 56

ГЛАВА 2. Упругие свойства морских поверхностных пленок 58

2.1. Введение 58

2.2. Методики взятия проб морских пленок 61

2.3. Изотермы и упругий гистерезис в морских пленках 65

2.3.1. Изотермы морских пленок 66

2.2.1. Упругий гистерезис в пленках ПАВ 73

2.4. Упругость пленок и коэффициент поверхностного натяжения в сликах на морской поверхности 77

2.5. Выводы к главе 2 85

ГЛАВА 3. Спектры ветровых гравитационно-капиллярных волн в присутствии пленок ПАВ 87

3.1. Введение. Общая формулировка задачи 87

3.2. Натурные эксперименты с искусственными сликами 92

3.3. Гашение пленками ветровых волн сантиметрового диапазона 98

3.3.1. Результаты экспериментов 98

3.3.2. Модель локального баланса 106

3.4. Гашение пленкой ветровых волн миллиметрового диапазона 109

3.5. Изменчивость ветровых волн дециметрового диапазона в присутствии пленок ПАВ 113

3.5.1. Эффект усиления дециметровых волн в слике. Эксперимент 113

3.5.2. Физический механизм эффекта усиления и модель спектрального контраста дециметровых волн в сликах 118

3.6. О возможностях радиолокационной диагностики пленок 127

3.7. Выводы к главе 3 132

ГЛАВА 4. Динамика гравитационно-капиллярных волн и пленок ПАВ в поле переменных течений. Слики на морской поверхности 134

4.1. Введение. Общая формулировка задачи 134

4.2. Динамика пленок ПАВ в поле поверхностных течений 138

4.2.1 .Пленка в поле стационарных неоднородных течений 139

4.2.2.Пленка в поле внутренних волн 140

4.3. Механизмы изменчивости спектров ветровых волн в поле неоднородных течений в присутствии пленок ПАВ 153

4.4. Лабораторное моделирование кинематического механизма модуляции гравитационно-капиллярных волн внутренней волной 157

4.4.1. Модуляция регулярных гравитационно-капиллярных волн 159

4.4.2. Модуляция ветровых волн 170

4.5. Лабораторное моделирование механизма модуляции концентрации ПАВ внутренней волной 176

4.6. Натурные наблюдения проявлений внутренних волн на морской поверхности в присутствии пленок ПАВ 182

4.7. Радиолокационные спутниковые изображения внутренних волн на морской поверхности 196

4.8. Натурные наблюдения пленочных сликов в поле неоднородных течений и ветрового дрейфа 209

4.8.1. "Слик-сулой" в поле неоднородного океанического течения 209

4.8.2. Слики в поле неоднородного ветрового дрейфа 216

4.9. Выводы к главе 4 221

ГЛАВА 5. Сильнонелинейные гравитационно-капиллярные волны и влияние на них пленок ПАВ 225

5.1. Введение. Физический механизм генерации паразитной капиллярной ряби крутыми гравитационно-капиллярными волнами 225

5.2. Лабораторное исследование характеристик паразитной капиллярной ряби, возбуждаемой периодическими гравитационно-капиллярными волнами 23 0

5.2.1. Характеристики паразитной капиллярной ряби 230

5.2.2. Влияние паразитной ряби на радиолокационное рассеяние 236

5.3.Лабораторное исследование кривизны гравитационно-капиллярных волн 241

5.4. Лабораторные исследования фазовой скорости мелкомасштабных ветровых волн см- мм диапазона и их гашения поверхностными пленками 252

5.4.1. Радиолокационные измерения фазовых скоростей мм-волн 252

5.4.2. Оптические измерения фазовых скоростей см-мм-волн 259

5.4.3. Гашение пленками ветровых волн см-мм-диапазонов 267

5.5. Эффект изменения доплеровского сдвига частоты радиолокационных сигналов мм-диапазона в сликах на морской поверхности г. 270

5.6. Каскадная модуляция паразитной ряби в поле внутренних волн 281

5.6.1 .Лабораторное исследование каскадной модуляции 281

5.6.2. Натурные наблюдения каскадной модуляции 286

5.7. Модуляция ветровых волн мм-диапазона в поле длинных волн в сликах 289

5.7.1. Модуляционная передаточная функция и доплеровские сдвиги 290

5.7.2. Натурные исследования сильной модуляции радиолокационных сигналов под действием длинных волн на воде с пленкой ПАВ 294

5.7.3. Лабораторные исследования сильной модуляции радиолокационных сигналов длинными волнами в присутствии пленки ПАВ 303

5.8. Выводы к главе 5 313

Заключение 316

Список цитированной литературы 319 

Введение к работе:

Актуальность темы.

Эффективное освоение океана и, в частности, шельфовых зон в настоящее время основано на интенсивном использовании методов и средств дистанционного, прежде всего, аэрокосмического, зондирования морской поверхности и приповерхностных слоев океана и атмосферы (см., например, [1, 2] и приведенную там библиографию). Широкое развитие получили как активные (радиолокационные, лидарные), так и пассивные (СВЧ-радиометрия, оптические в условиях естественного освещения) средства дистанционной диагностики. Весьма перспективными, в частности, являются используемые в последние десятилетия спутниковые системы получения изображения океана в инфракрасном и оптических диапазонах, а также радиолокаторы с синтезированной апертурой (РСА), позволяющие получать радиоизображения морской поверхности с высоким разрешением (порядка 10 метров). Данные приборы являются эффективными инструментами для решения практических задач навигации, строительства гидротехнических сооружений, диагностики антропогенных загрязнений, оценки состояния ледового покрова, а также для исследования динамических процессов в океане, последнее, в свою очередь, крайне важно для изучения общей циркуляции океана и построения моделей изменений климата.

Важнейшим фактором, определяющим процессы рассеяния электромагнитных волн морской поверхностью, и, следовательно, характеристики сигналов оптических и радиолокационных систем зондирования океана, являются ветровые гравитационно-капиллярные волны (ГКВ). Перспективы развития дистанционных методов изучения океана определяются, поэтому, уровнем понимания процессов возбуждения, распространения и диссипации ГКВ в океане [3,4] и разработки соответствующих моделей их спектра [5-9]. Для ветровых ГКВ характерна значительная изменчивость их характеристик, что содержит важнейшую информацию о динамических процессах в океане и атмосфере [10-12]. Неоднородности интенсивности ветрового волнения, наблюдаемые на аэрокосмических изображениях поверхности океана [13-18] могут быть вызваны фронтальными зонами, внутренними волнами, океаническими и атмосферными вихрями и т.д. и существенно различаться как по своей геометрии, так и по характеру изменений интенсивности (наличие областей усиления, либо ослабления волнения).

Существенное влияние на характер изменчивости ветровых ГКВ оказывают пленки поверхностно-активных веществ (ПАВ), почти повсеместно, включая прибрежные зоны, присутствующие на поверхности океана. Обширная библиография по свойствам пленок и их воздействию на ГКВ приведена в [19-24]. Пленки, в т.ч. нефтяные, приводят к гашению коротких ГКВ [21-23], образуя участки пониженной интенсивности волнения (слики), что проявляется в изменении интенсивности радиолокационных и оптических сигналов, рассеянных морской поверхностью [19, 24-29], в частности, в появлении областей пониженной яркости на радиолокационных панорамах [28-30]. Концентрация ПАВ перераспределяется в поле скоростей поверхностных течений, связанных с динамическими атмосферными и океаническими процессами, поэтому пленочные слики могут использоваться и в качестве индикаторов этих процессов [10,12], и для получения количественной информации о характеристиках последних [29, 31]. Анализ механизмов образования сликов на морской поверхности является, таким образом, весьма актуальной проблемой, связанной с возможностью получения информации о динамических процессах по данным спутниковых наблюдений океана.

В зависимости от природы пленок (биогенные или антропогенные ПАВ) слики могут указывать на наличие зон высокой биологической продуктивности, либо зон загрязнений, в том числе, нефтяных. Поэтому исследование воздействия пленок на ветровые ГКВ, наряду с задачей дистанционной диагностики динамических процессов, приобрело значительную актуальность и в связи с возможностью ведения экологического мониторинга океана из космоса [1]. Весьма важным является также анализ роли пленок ПАВ в процессах тепло и газообмена на границе океан – атмосфера (см., например, [10, 20]). Наконец, изучение эффектов воздействия пленок на ветровые ГКВ представляет интерес и для исследования собственно динамики ветровых волн, поскольку использование пленок позволяет управлять процессами возбуждения, нелинейных взаимодействий и диссипации в спектре волнения.

Важно заметить, что характер воздействия пленок на ветровые ГКВ существенно зависит как от физических свойств пленок, так и от длины волн, поэтому в основе методов дистанционной, в частности, радиолокационной диагностики пленок ПАВ должен лежать анализ изменчивости волнения в сликах в различных диапазонах спектра ГКВ. При этом известные ранее данные об особенностях спектров волнения в пленочных сликах (см. [19-21, 30] и цитированную литературу) были явно недостаточны для развития количественных методов такой диагностики. Для решения данной задачи требовались систематические эксперименты, выполненные при различных метеоусловиях и, что весьма важно, для пленок с известными характеристиками (коэффициентом поверхностного натяжения и параметром упругости). При этом, вообще говоря, необходимо знание динамической упругости пленок, т.е. отвечающей диапазону частот исследуемых ГКВ, что требовало развития соответствующих методов измерения этого параметра.

Что касается второй части проблемы – механизмов образования пленочных сликов на морской поверхности, то здесь имелись, в основном, результаты теоретических исследований (так, в [32-34] рассматривалось перераспределение концентрации ПАВ в поле неоднородных течений и внутренних волн), прямые же экспериментальные свидетельства связи пленочных сликов с процессами в океане и атмосфере практически отсутствовали (в качестве исключения можно упомянуть исследования формирования пленочных сликов в следах за надводными судами [35]). Важным аспектом проблемы проявления динамических процессов на морской поверхности, в т.ч. в присутствии пленок ПАВ, является анализ физических механизмов воздействия переменных течений на ветровые ГКВ в разных диапазонах их спектра. Было установлено, в частности, что вариации спектра ветровых ГКВ дециметрового (дм) диапазона на переменных течениях в поле внутренних волн хорошо описывается кинематической моделью [36, 37], которая, однако, занижает уровни модуляции в спектре ГКВ с длинами менее 10 см и не позволяет объяснить сильные вариации интенсивности радиолокационных сигналов см-диапазона [38, 39]. Весьма актуален, поэтому, анализ физических механизмов и разработка моделей, которые позволили бы объяснить сильную модуляцию ГКВ сантиметрового и миллиметрового (см-мм-) диапазонов в поле переменных течений. Значительное развитие в настоящее время получила модель модуляции инкремента роста ветровых волн [40, 41]. Другой механизм сильной модуляции ГКВ (“каскадный” механизм), отмеченный впервые в [36] и связанный с влиянием нелинейности ГКВ, которая проявляется в присутствии в спектре ветровых ГКВ так называемых вынужденных волн [42, 43], в частности, “паразитной капиллярной ряби“ [44-47], оставался фактически неисследованным.

Перечисленные выше проблемы явились причиной значительно возросшего в последние десятилетия интереса к свойствам морских пленок и к эффектам их воздействия на ветровое волнение, что и определило актуальность данной диссертационной работы.

Цель и задачи исследования.

Основная цель настоящей работы - изучение механизмов воздействия пленок ПАВ на короткие ветровые волны, а также анализ роли пленок при формировании проявлений океанических и атмосферных процессов на взволнованной морской поверхности.

Конкретные задачи работы:

- развитие методов определения физических характеристик пленок ПАВ; изучение упругих свойств морских пленок;

- исследование спектров ветровых ГКВ в присутствии пленок ПАВ;

- изучение динамики пленок ПАВ и спектров ГКВ см-диапазона в поле внутренних волн и неоднородных течений, анализ механизмов образования пленочных сликов на морской поверхности;

- исследование механизмов сильной модуляции ветровых волн см-мм-диапазонов в поле переменных течений (внутренних и длинных поверхностных волн) при наличии пленок ПАВ.

Научная новизна работы.

В работе впервые получены перечисленные ниже следующие результаты.

  1. Дано последовательное теоретическое объяснение механизма резонансного затухания ГКВ в присутствии упругой пленки.

  2. Предложен метод параметрически возбуждаемых волн для измерения коэффициента затухания ГКВ и восстановления параметров пленок, обнаружен ряд особенностей упругих свойств морских пленок, в частности, релаксация и упругий гистерезис, установлено, что для сликов на морской поверхности характерно присутствие пленок с высокой упругостью.

  3. Обнаружен эффект усиления волн дм-диапазона в присутствии пленки ПАВ, предложен физический механизм и модель явления, установлены основные закономерности гашения пленкой ветровых ГКВ см-мм-диапазона (в т.ч. наличие максимума степени гашения - контраста при слабом ветре в см-диапазоне и при умеренном ветре в мм-диапазоне), данные закономерности предложено использовать в качестве спектрального признака пленочных сликов при их многочастотном радиолокационном зондировании.

  4. Теоретически показана возможность образования «пленочного предвестника» перед цугом внутренних волн (ВВ) в присутствии постоянного поверхностного течения, скорость которого превышает групповую скорость ВВ, показано, что модуляция концентрации ПАВ возрастает при приближении скорости течения к фазовой скорости ВВ (условие резонанса).

  5. В лабораторном эксперименте дано экспериментальное подтверждение эффекта сильной модуляции ПАВ в поле ВВ при наличии резонансного течения.

  6. В лабораторном эксперименте промоделирован кинематический механизм модуляции ГКВ в поле ВВ и показан резонансный характер модуляции ГКВ в гравитационной и в капиллярной области частот, развита теоретическая модель модуляции.

  7. Дано прямое подтверждение действия пленочного механизма модуляции ветровых ГКВ и образования пленочных сликов в поле ВВ.

  8. Обнаружены проявления приливных ВВ (длины волн 15-20 км) на радиолокационных изображениях океанского шельфа, предложена классификация различных типов радиоизображений коротких ВВ (длины волн 0,5-1 км), обнаружен эффект трансформации одного типа изображений коротких ВВ в другой в зависимости от положения коротких ВВ относительно фазы приливной ВВ, дана интерпретация различных типов радиоизображений ВВ.

  9. Обнаружены проявления неоднородных течений на морской поверхности в присутствии пленок ПАВ в виде системы “слик-сулой”, характеризуемой гашением см-волн пленкой в слике и усилением дм-волн в поле неоднородного течения в области сулоя.

  10. Обнаружены слики, обусловленные концентрацией ПАВ в поле монотонного и осциллирующего ветровых фронтов.

  11. В лабораторном эксперименте исследованы характеристики паразитной капиллярной ряби мм-диапазона, возбуждаемой крутыми ГКВ, установлен квазипороговый характер возбуждения ряби, построены гистограммы кривизны гребней и впадин ветровых ГКВ и показана их асимметрия из-за асимметрии профиля ГКВ и наличия паразитной ряби, обнаружено усиление этой асимметрии в присутствии пленки.

  12. На основе данных радиолокационных и оптических измерений, выполненных в ветроволновом бассейне, обнаружено отличие фазовых скоростей ветровых ГКВ см-мм-диапазонов от линейного дисперсионного уравнения и получены оценки относительной интенсивности вынужденных волн (в т.ч. паразитной ряби) в спектре ветровых см-мм-ГКВ на чистой воде и при наличии пленок ПАВ.

  13. В натурном эксперименте обнаружен эффект изменения доплеровского сдвига частоты радиолокационных сигналов при наличии пленки ПАВ и получено, что знак и величина изменения доплеровских сдвигов существенно зависят от величины параметра упругости пленки.

  14. В лабораторном эксперименте промоделирован механизм сильной (каскадной) модуляции паразитной капиллярной ряби в поле ВВ, даны подтверждения действия механизма каскадной модуляции в натурном эксперименте.

  15. Обнаружен эффект усиления модуляции интенсивности радиолокационного сигнала мм-диапазона в поле длинных поверхностных волн в присутствии пленки ПАВ, выполнено моделирование эффекта в ветроволновом бассейне и показано, что эффект связан с каскадной модуляцией паразитной ряби.

Основные положения, выносимые на защиту.

  1. Коэффициент затухания ГКВ в присутствии пленки ПАВ определяется интенсивностью вихревой компоненты ГКВ, которую можно описать как вынужденную продольную волну, возбуждаемую потенциальной компонентой ГКВ. Интенсивность вынужденной продольной волны максимальна при величине упругости пленки, отвечающей условию близости фазовых скоростей продольной волны и ГКВ, что позволяет объяснить квазирезонансный характер зависимости коэффициента затухания ГКВ от упругости. Величины коэффициента затухания ГКВ и соответствующей упругости пленки могут быть определены на основе измерений порога параметрического возбуждения стоячих ГКВ в бассейне, совершающем вертикальные колебания (метод параметрически возбуждаемых волн). Для сликов на морской поверхности - областей пониженной интенсивности коротких ветровых ГКВ, характерно наличие пленок ПАВ с высокой упругостью.

  2. Воздействие пленок ПАВ на ветровые ГКВ (в отсутствие переменных течений) характеризуется уменьшением интенсивности ГКВ в см-диапазоне их спектра, при этом степень гашения ГКВ (контраст) растет с ростом упругости пленки и с уменьшением длины волны и достигает максимума для ГКВ с длинами порядка и менее единиц см. Для ГКВ дм-диапазона возможен эффект усиления волн в присутствии пленки. Физическими механизмами воздействия пленок на ГКВ см-дм-диапазонов являются линейное вязкое затухание ГКВ, а также затухание дм-волн из-за взаимодействия с см-волнами. Особенности зависимости контраста от длины ГКВ могут быть использованы как спектральный признак при радиолокационной диагностике пленок.

  3. Переменные течения формируют неоднородные распределения концентрации ПАВ и упругости пленок на морской поверхности, что приводит к образованию неоднородностей в распределении интенсивности коротких ветровых ГКВ (пленочный механизм воздействия переменных течений на ГКВ). Пленочный механизм может быть доминирующим для ГКВ см-диапазона и приводить к образованию сликов в поле различных динамических процессов - внутренних волн, конвергентных течений, неоднородностей поля ветра. Пленочный механизм, наряду с известными кинематическим механизмом и механизмом модуляции инкремента ветровых ГКВ, позволяет объяснить особенности вариаций спектра ветровых ГКВ в поле переменных течений и проявления этих течений в радиолокационных изображениях морской поверхности.

  4. Сильная нелинейность ГКВ см-дм-диапазонов проявляется в присутствии в спектре волнения мм-диапазона вынужденных компонент (паразитной ряби). Фазовые скорости паразитной ряби соответствуют фазовым скоростям генерирующих их (несущих) ГКВ, а амплитуда ряби квазипороговым образом зависит от амплитуды несущих ГКВ. Данные особенности вынужденных компонент ветровых ГКВ определяют механизмы сильной изменчивости спектра волн мм-диапазона: каскадную модуляции ряби внутренними волнами, гашение пленкой ГКВ мм-диапазона, эффекты изменения доплеровских сдвигов частоты радиолокационных сигналов мм-диапазона, а также усиления модуляции радиолокационных сигналов из-за длинных волн в присутствии пленок ПАВ.

Научная и практическая значимость работы.

Результаты, касающиеся влияния пленок на спектры ветровых ГКВ могут быть использованы при разработке алгоритмов и аппаратуры для обнаружения пленок на морской поверхности, оценке их характеристик и различения на фоне сликоподобных (в частности, ветровых) аномалий. Обнаруженный эффект изменения в сликах доплеровских сдвигов частоты радиолокационных сигналов также можно использовать для целей дистанционной диагностики пленок, в частности, для уточнения величины их упругости. Важную научную и практическую значимость имеет развитый в работе метод измерения затухания ГКВ и полученные с его помощью данные о характеристиках пленок, пленки с измеренными характеристиками могут использоваться как эталонные в экспериментах по дистанционной диагностике сликов, а также для целей калибровки дистанционной аппаратуры.

Результаты исследований динамики пленок и изменчивости спектра ветровых ГКВ в поле переменных течений углубляют понимание механизмов образования сликов на морской поверхности и их связи с внутренними волнами, неоднородными течениями, ветровыми фронтами.

Результаты, касающиеся механизма генерации паразитной капиллярной ряби, а также ее каскадной модуляции в поле внутренних и длинных поверхностных волн могут служить основой для совершенствования моделей ветрового волнения см-мм-диапазонов, что, в свою очередь, необходимо для развития методов дистанционного зондирования и интерпретации данных спутниковых наблюдений морской поверхности. В частности, результаты по каскадной модуляции паразитной ряби можно использовать для более точного определения амплитуды длинных ветровых волн по данным измерений радиолокационной модуляционной передаточной функции.

Полученные в диссертации результаты использовались в следующих исследовательских проектах, выполненных и выполняющихся под руководством автора: в проектах Российского фонда фундаментальных исследований 93-05-08126-а (1993-1995 гг.), 96-05-65087-а (1996-1998 гг.), 99-05-64797-а (1999-2001гг.), 01-05-79035-к (2001г.), 02-05-65102-а (2002-2004 гг.), 03-05-79053-к (2003г.), 04-05-79015-к (2004г.), 05-05-64137-а (2005-2007гг.), 05-05-79045-к (2005г.), 06-05-79018-к (2006г.), 07-05-10030-к (2007г.); Международного научно-технического центра (МНТЦ Р1774, 2000-2001гг.); INTAS (№96-1665 “Organic slicks on the sea surface and their remote sensing”, 1997-1999гг.; №03-51-4987 “Slicks as Indicators of Marine Processes”, 2004-2007гг.; №8014 “Bound waves: dynamics and impact on remote sensing of the sea surface” 2006-2009гг.); INTAS-GMES (“OSCSAR”, “DeCOP”, 2004-2005гг.); INTAS-ESA (“MOPED”, “DEMOSSS”, 2006-2008гг.); а также при участии автора в проектах CRDF- Grant Assistant Program RGO-655; ФЦНТП Миннауки РФ (Госконтракт N 40.020.1.1.1171); ФЦП Миннауки РФ “Мировой океан” (2003-2007 гг., госконтракт N 43.634.11.0014), ОФН РАН «Проблемы радиофизики» (2004-2006 гг.), научной школы акад. В.И Таланова (2005-2007гг.).

Апробация результатов работы и публикации.

Основные результаты диссертации докладывались на международных конференциях: Генеральной океанографической ассамблее (Акапулько, Мексика, 1988), Симпозиуме “Взаимодействие океана и атмосферы” (Марсель, Франция, 1993), II Европейской конференции по механике жидкости (Варшава, Польша, 1994), коллоквиуме Евромех №287 ”Поверхностные слики и мониторинг взаимодействия между океаном и атмосферой” (Ворвик, Великобритания, 1997), Международных симпозиумах по наукам о Земле и дистанционному зондированию – IGARSS (Сиэтл, США, 1998; Гамбург, Германия, 1999; Гонолулу, США, 2000; Сидней, Австралия, 2001;Торонто, Канада, 2002), симпозиуме Европейского космического агентства “Совместное использование MERIS/ASAR для наблюдения морских сликов и мелкомасштабных процессов” (Италия, 2003), Международном симпозиуме “Тематические проблемы физики нелинейных волн” (Нижний Новгород, Россия, 2003), Международном американско-балтийском симпозиуме (Клайпеда, Литва, 2004), Генеральных ассамблеях Европейского геофизического общества (Ницца, Франция, 2004; Вена, Австрия, 2006), Международной конференции “Современные проблемы оптики естественных вод” (Нижний Новгород, Россия, 2007);

на российских конференциях:

Всероссийской Юбилейной конференции РФФИ (Москва, 2002), Юбилейной всероссийской научной конференции (10 лет РФФИ) “Фундаментальные исследования взаимодействия суши, океана и атмосферы” (Москва, 2002), Школах по нелинейным волнам (Нижний Новгород, 2004, 2006), Открытых Всероссийских конференциях “Дистанционное зондирование Земли из космоса” (Москва, 2003, 2004, 2006); межведомственных конференциях “Проявления глубинных процессов на морской поверхности” (Н. Новгород, 2003, 2005, 2007);

на приглашеных семинарах:

в Университете Гамбурга (Германия, август, 1990; февраль, 1991; апрель, 2004), в Университете Флоренции (Италия, апрель, 1993; ноябрь, 1998), в Университете Саутгемптона (Великобритания, июнь, 1995; декабрь, 2003), в Военно-морской исследовательской лаборатории (США, Вашингтон, июнь, 1998), в Технологическом центре Винфрича (Великобритания, июль, 1999), в Университете Лиссабона (Португалия, ноябрь, 2000; ноябрь, 2002), в Университете Порту (Португалия, ноябрь, 2000), в Университете Гейдельберга (Германия, январь, 2002), в Университете Осло (Норвегия, апрель, 2007), в ИКИ РАН (Москва, апрель, 2003), а также на семинарах в ИПФ РАН.

Основные результаты диссертации опубликованы в работах [1*- 64*], из них 20 статей в рецензируемых российских журналах, 12 статей в зарубежных рецензируемых журналах и изданиях, 22 работы в трудах конференций, 8 статей в тематических сборниках и 2 препринта.

Личный вклад автора

Содержащиеся в диссертации материалы получены автором самостоятельно, либо под его руководством и при его непосредственном участии. Автору принадлежат постановка задач, организация и руководство всеми натурными и лабораторными экспериментами, а также развитие теоретических моделей (при равном вкладе в работах [1*, 2*, 5*, 8*, 9*]). Автор принимал участие во всех экспериментах, анализе и обработке данных.

Структура и объем работы.

Диссертации состоит из Введения, 5 глав и Заключения. Общий объем - 335с., в том числе 144 рисунка и 8 таблиц. Список литературы включает 232 наименования.

Подобные работы
Тюнина Светлана Геннадьевна
Исследование различных типов внутренних гравитационных колебаний и волн в ионосфере методами нелинейной динамики
Левшина Светлана Ивановна
Содержание и динамика органического вещества поверхностных вод бассейна р. Амур и его геоэкологическое значение
Куркин Андрей Александрович
Нелинейная и нестационарная динамика длинных волн в прибрежной зоне
Полухин Николай Владимирович
Моделирование и расчет нелинейных внутренних волн в океане
Новотрясов Вадим Васильевич
Нелинейные внутренние волны прибрежной зоны океана
Овчаренко Владимир Владимирович
Трансформация инфрагравитационных и ветровых волн в зоне перехода "океан - земная кора"
Павлова Елена Петровна
Взаимосвязь тонкой структуры и внутренних волн в шельфовой зоне окраинных морей Тихого океана
Снытко Валериан Афанасьевич
Проблемы динамики вещества в геосистемах южных регионов Сибири
Баранов Николай Владимирович
Влияние уровня минерального питания на динамику питательных веществ в почве, рост, развитие и урожайность риса в условиях юго-востока Ростовской области
Ворокова Маринат Заурбиевна
Оптимизация питания различных сортов томата и динамика питательных веществ в луговых карбонатных почвах

© Научная электронная библиотека «Веда», 2003-2013.
info@lib.ua-ru.net