Электронная библиотека Веда
Цели библиотеки
Скачать бесплатно
Доставка литературы
Доставка диссертаций
Размещение литературы
Контактные данные
Я ищу:
Библиотечный каталог российских и украинских диссертаций

Вы находитесь:
Диссертационные работы России
Технические науки
Электротехнические материалы и изделия

Диссертационная работа:

Тимофеев Игорь Александрович. Разработка технологий изготовления порошковых магнитных материалов для электротехнических изделий : диссертация ... доктора технических наук : 05.09.02 / Тимофеев Игорь Александрович; [Место защиты: ГОУВПО "Московский энергетический институт (технический университет)"].- Москва, 2009.- 234 с.: ил.

смотреть содержание
смотреть введение
Содержание к работе:

ВВЕДЕНИЕ 6

1. ОСНОВНЫЕ СВЕДЕНИЯ О РАЗРАБОТКЕ МАТЕРИАЛОВ ДЛЯ
МАГНИТОПРОВОДОВ 13

  1. Диаграмма состояния и кристаллическая структура сплава кремния с железом 13

  2. Физические свойства слиткового сплава кремния с железом 15

  3. Свойства спеченных материалов, полученных из железного порошка... 18

  4. Свойства спеченных магнитомягких изделий из сплава кремния с железом 21

  5. Классификация дефектов кристаллической решетки магнитных материалов 30

  6. Влияние дислокаций на свойства магнитных материалов 31

  7. Доменная структура сплава кремния с железом 37

  8. Выводы по обзору литературы и постановка задачи исследования 41

2. ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ 45

  1. Способы получения исходных материалов 45

  2. Пресс-формы для изготовления магнитных материалов методом порошковой металлургии 47

  3. Методика изготовления элементов магнитных систем 48

  1. Приготовление шихты 48

  2. Дозирование порошковой шихты 49

2.3.2. Формирование изделий из порошковой шихты 52

  1. Сушка прессованных изделий 53

  2. Спекание и термическая обработка элементов магнитных систем.... 54

  3. Способ получения монокристаллов 54

2.4. Диагностика элементов магнитных систем 54

  1. Измерение пористости 54

  2. Определение влажности 55

  1. Оценка формуемости 55

  2. Исследование ферромагнитных свойств полученных материалов.... 57

  3. Методика исследования удельных магнитных потерь 58

2.5. Диагностика микроструктуры элементов магнитных систем 59

  1. Подготовка шлифов для прямого наблюдения микроструктуры 60

  2. Выявление дислокационной структуры 60

  3. Выявление доменной структуры 62

2.6. Диагностика механической прочности 62

  1. Механические испытания спеченных образцов 62

  2. Испытание спеченных магнитных систем на механическую износостойкость 63

3. ВЛИЯНИЕ СТРУКТУРЫ МАТЕРИАЛОВ, ПОЛУЧЕННЫХ МЕТОДОМ
ПОРОШКОВОЙ МЕТАЛЛУРГИИ (МПМ), НА МАГНИТНЫЕ СВОЙСТВА

  1. Спекание материалов для магнитопроводов 65

  2. Влияние температуры спекания на дислокационную структуру материалов, полученных МПМ 66

  3. Влияние времени спекания на дислокационную структуру материалов, полученных МПМ 71

  4. Зависимость коэрцитивной силы и максимальной магнитной проницаемости от плотности дислокаций и концентрации доменов для материалов, полученных МПМ 77

  5. Исследование удельных потерь материалов, полученных МПМ 91

4. РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ДЛЯ
ИЗГОТОВЛЕНИЯ ЭЛЕМЕНТОВ МАГНИТНЫХ СИСТЕМ НА ОСНОВЕ

МПМ 101

4.1. Влияние скорости охлаждения и термомагнитной обработки на магнитные
и технологические свойства материалов, полученных МПМ 101

  1. Исследование технологического процесса создания изоляционных слоев элементов магнитных систем 105

  2. Совмещенный способ антикоррозийного покрытия и пропитки элементов магнитных систем 107

  3. Способ повышения механической износостойкости элементов магнитных

систем 111

4.5. Исследование магнитно-импульсного прессования элементов магнитных

систем 116

  1. Разработка критической технологии для изготовления элементов магнитных систем, полученных методом жидкофазного спекания (МЖФС) 128

  2. Физико-механические свойства материалов, полученных по технологии МПМ 142

  3. Вероятностно-статистический анализ технологической точности и

качества изготовления магнитных систем 146

5. РАЗРАБОТКА ТЕХНОЛОГИЧЕСКИХ МЕТОДОВ ИЗГОТОВЛЕНИЯ
ЭЛЕМЕНТОВ МАГНИТНЫХ СИСТЕМ, ПОЛУЧЕННЫХ МПМ 151

  1. Зависимость характеристик электромагнитов, полученных из материалов МПМ 151

  2. Применение матричной формы схемы прессования 161

  1. Прессование без вариаций давления 161

  2. Прессование с эквидистанционной вариацией давления 163

  3. Прессование при дифференциальном давлении 168

  4. Прессование композиционных элементов магнитных систем на основе сочетания магнитомягких и магнитотвердых материалов (МММ и МТМ)171

  1. Механическая износостойкость слоистых магнитных систем 176

  2. Магнитные свойства характеристик реле в сравнении с зарубежными аналогами 183

6. ПРИМЕНЕНИЕ ЭЛЕМЕНТОВ ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ
МАГНИТОПРОВОДОВ МПМ В СОВРЕМЕННЫХ
ЭЛЕКТРОТЕХНИЧЕСКИХ УСТРОЙСТВАХ 192

6.1. Создание сердечника с равномерной коллимацией магнитного потока для
электромагнитного механизма с внешним поворотным якорем клапанного вида

  1. Проектирование Ш-образных элементов магнитных систем переменного тока для магнитных пускателей 220

  2. Разработка магнитной системы маломощного синхронного двигателя с постоянными магнитами 225

  3. Проектирование магнитной системы индукторного генератора 232

  4. Разработка магнитной системы асинхронного двигателя 238.

  1. Исследование магнитной системы трансформатора малой мощности 247

  2. Исследование магнитной системы однофазного индукционного счетчика 256

  3. Создание магнитной системы электромагнитного аппарата с полым

сердечником.. 264

ЗАКЛЮЧЕНИЕ 276

ЛИТЕРАТУРА 280

ПРИЛОЖЕНИЯ 301

Введение к работе:

Актуальность темы. Разработка новых материалов, необходимых для решения различных электротехнических задач, совершенствование уже известных материалов с целью получения более высоких эксплуатационных характеристик электротехнических изделий, являются важнейшими направлениями, определяющими развитие электротехники и электротехнической промышленности.

Магнитные материалы широко применяются в самых различных классах электротехнических изделий, их электромеханические характеристики в значительной мере определяют эксплуатационные характеристики электротехнических изделий, их механическую износостойкость, надежность, рабочую температуру и т. п.

Одним из прогрессивных методов формирования элементов изделий из магнитных материалов являются методы порошковой металлургии, которая на сегодня используется в основном для получения элементов конструкционных деталей, несущих в основном механические нагрузки.

Использование указанных технологических методов для рабочих элементов электротехнических конструкций (сердечников, магнитопроводов, магнитных шунтов и т. п.) поставило задачу проведения комплекса физических и технологических исследований по получению магнитных материалов с повышенными магнитными характеристиками.

Проведение исследований, результаты которых изложены в диссертации, осуществлялось в соответствии с постановлением Правительства Российской Федерации № 80 от 25 января 1998 г. «О федеральной целевой программе «Энергосбережение России на 1998-2005 годы» и на основании Указа Президента РФ В. В. Путина № ПР-578 от 30 марта 2002 г. «Приоритетные направления развития науки, технологий и техники РФ и Перечень критических технологий РФ».

Созданию новой инновационной технологии получения магнитных материалов и посвящена настоящая работа и как показали проведенные исследования она позволяет сократить трудоемкость операций изготовления магнитных элементов, способствует снижению себестоимости изделий, экономии магнитных материалов, высвобождению прокатного, штамповочного, металлорежущего станочного оборудования, широко используемого в современной технологии производства элементов магнитных цепей.

Приведенная работа восполняет пробел, который имеет место в данной отрасли науки и техники.

Цель работы. Целью работы является разработка технологии получения магнитомягких материалов методами порошковой металлургии, теоретические исследования закономерностей магнитных характеристик, возникающих от новых методов приготовления, создания оснастки технологического процесса порошковой металлургии, позволяющей создавать магнитопроводы различной геометрической формы с улучшенными амплитудно-фазофыми характеристиками и практическое внедрение изделий по порошковой магнитной технологии в агрегатах и изделиях электротехники.

Анализ литературных источников свидетельствует, что исследованию процессов изготовления деталей методом порошковой металлургии, являющимся одним из новых прогрессивных технологий, посвящено большое количество работ отечественных и зарубежных ученых и специалистов.

Вопросы теории и технологии, формообразования и спекания порошковых и гранулированных материалов, рассмотрены в работах Г.И.Аксенова, А.Б.Альтмана, Р.А.Андриевского, В.А.Анциферова, М.Ю.Бальшина, С.В.Белова, Б.А.Борок, Г.А.Виноградова, П.А.Витязя, Я.Е.Гегузина, Ю.Г.Дорофеева, С.С.Ермакова, В.Н.Еременко, Г.М.Ждановича, В.А.Ивенсена, В.П.Каташинского, О.А.Катруса, С.С.Кипарисова, М.С.Ковальченко, А.Г.Косторнова, Г.С.Креймера, Ю.В.Левинского, Г.А.Либенсона, Е.Б.Ложечникова, Н.В.Манукяна, Г.А.Меерсона, Н.Н.Павлова, В.Е.Перельмана, Я.Б.Пинеса, И.Д.Радомысельского, В.С.Раковского, А.И.Рудского, О.В.Романа, Г.В.Самсонова, В.М.Сегала, В.В.Скорохода, А.В.Степаненко, И.М.Федорченко, И.Н. Францевича и других, а также ученых дальнего зарубежья: Айзенкольба, Джеймса, Джонса, Кучинского, Ленеля, Ояне, Ристича, Хауснера и других.

В значительной мере теоретические положения физики и металловедения, электрических машин и аппаратов базируются на результатах работ современных отечественных и зарубежных ученых, к которым принадлежат: Г.Н.Александров, П.А.Арсеньев, В.Г. Баженов, А.М.Балбашов, О.А.Банных, К.А.Боярчук, Г.А.Бугаев, Б.К.Буль, А.М.Глезер, Ю.Н.Драгошанский, Ю.В.Зайцев, Ю.М.Иньков, А.В.Иванов-Смоленский, Г.С.Кандаурова, Н.Г.Колбасников, И.П.Копылов, В.М.Кондратов, В.Д.Кочетков, В.А.Кузнецов, П.А.Курбатов, И.О.Леушин, А.С.Лилеев, М.А.Любчик, Л.А.Макриденко, Р.И.Малинина В.М.Матюнин, Б.М.Могутнов, В.А.Нестерин, А.Г.Никитенко, Н.И.Носкова, Ю.А.Осипьян, А.Г.Пастушенков, И.И.Пеккер, Ю.К.Розанов, С.В.Серебрянников, Г.П.Станулевич, В.М.Строев, В.П. Чепарин, В.А. Жаринов, Е.Н.Шефтель, В.Н.Шоффа, D.Broun, R.S.Tebble, T.Nozawa, T.Yamamoto и другие.

Научные труды этих ученых и специалистов в основном определили направление и характер теоретических и практических разработок, выполненных в настоящей работе.

Научная новизна.

  1. Разработана теория влияния структурных дефектов типа дислокаций и плотности доменов относительно их кинематических характеристик взаимодействия в порошковых магнитомягких материалах на коэрцитивную силу, максимальную магнитную проницаемость, удельные потери и удельное электрическое сопротивление.

  2. Определены области изменения параметров разработанной теории для магнитомягких материалов, полученных методом порошковой металлургии.

  3. Разработан матричный формализм процесса прессования слоистых магнитных материалов, который дает возможность формировать градиентные характеристики изделий электротехники по фазе и амплитуде.

Основные научные положения, выносимые на защиту:

- основные теоретические положения процесса намагничивания и перемагничивания магнитомягких материалов;

- методологические основы формообразования и спекания прошковых магнитомягких материалов;

- результаты теоретических и экспериментальных исследований технологических процессов изготовления магнитопроводов;

- методы оптимизации геометрических форм магнитопроводов постоянного тока;

- новые классы магнитных систем переменного тока, выполненные различными методами дискретного прессования.

Практическая ценность и реализация результатов работы состоят в следующем:

- внедрение прессованных и спеченных магнитопроводов с проведением опытно-промышленных и эксплуатационных испытаний на контакторах типа МПМК-1, изготовленных по чертежам ГЛЦИИ 757.235.002 в соответствии с представленными чертежами автора. Спеченные магнитопроводы изготавливаются на Кинешемском заводе «Электроконтакт» и используются на указанных контакторах с 1999 г. Внедрение разработанной технологии позволило повысить максимальную магнитную проницаемость, снизить коэрцитивную силу и повысить механическую износостойкость аппарата;

- внедрение прессованных и спеченных магнитопроводов с проведением опытно-промышленных и эксплуатационных испытаний на Броварском заводе порошковой металлургии. Спеченные магнитопроводы монтируются и комплектуются с другими деталями и затем собираются в кнопочные элементы типа ВП-51 (ЦМ 7774005), которые в последствии устанавливаются в порталах для автоматического управления высотными гражданскими лифтами типа У-0,71 МС. Спеченные магнитопроводы позволяют повысить физико-механические свойства, исключить трудоемкие операции обработки и получать сложные конструктивные формы деталей практически без потерь исходного сырья;

- использование технологического процесса изготовления спеченных слоистых магнитопроводов. Спеченные слоистые магнитопроводы используются для изготовления магнитных систем на реле типа РПУ-1 во Всесоюзном научно-исследовательском, проектно-конструкторском и технологическом институте релестроения (ВНИИР), что позволило снизить электрические потери до 0,5 Вт/кг для магнитной индукции 1,0 Т и частоте перемагничивания 50 Гц, увеличить относительную магнитную проницаемость до 17000 и уменьшить коэрцитивную силу до 7,9 А/м;

- введением высокотемпературного отжига, примененного на магнитных системах, в технологический процесс производства реле ЭП-41В Тырныаузского завода низковольтной аппаратуры. В результате указанного высокотемпературного отжига уменьшилось время технологического цикла на 37,5%, улучшились магнитные характеристики реле и повысилась механическая износостойкость магнитных систем в 1,5-2 раза по сравнению с аналогичными системами;

- использование разработанных спеченных магнитопроводов для трансформаторов напряжения малой мощности на основе безотходной технологии взамен аналогичного магнитопровода для трансформатора напряжения малой мощности типа ТБС-2. Разработанные спеченные магнитопроводы используются на Сарапульском радиозаводе, что позволило по сравнению с магнитопроводами аналогичных трансформаторов малой мощности снизить расход потребляемой мощности на 23%, повысить КПД на 24% и поднять Cosj на 27%;

- внедрение спеченных магнитопроводов, изготовленных по чертежам автора, с проведением опытно-промышленных и эксплуатационных испытаний. Спеченные магнитопроводы используются для изготовления магнитных систем синхронных двигателей типа ДВС-VI на Чебоксарском предприятии ОАО «Завод электроники и механики». Внедрение разработанной конструкции позволило уменьшить затраты стали на 33%, увеличить вращающий момент на 13% и повысить КПД на 14%.

Общий экономический эффект от внедрения спеченных магнитных систем для электротехнических агрегатов и изделий, разработанных в соответствии с предложенными в представленной работе технологическими процессами изготовления, составил 3976,9 тыс. руб. (в ценах 2002 года).

Научные положения диссертации используются в учебном процессе:

при чтении лекций и подготовке лабораторных работ по курсам «Электродинамика», «Магнитные материалы и элементы», «Теоретическая физика», «Теоретическая электротехника»;

при подготовке аспирантских и магистерских диссертаций, выпускных работ бакалавров, выполнении исследовательских курсовых и дипломных проектов;

при издании двух учебных пособий.

Реферируемая работа является частью комплекса работ, проведенных автором на кафедре «Магнетизма» Тверского государственного университета и на кафедре «Физики и технологии электротехнических материалов и компонентов и автоматизированных электротехнических комплексов» Московского энергетического института (технического университета).

Апробация работы. Основные результаты работы были доложены на международных и всероссийских конференциях, в том числе: международной научно-практической конференции «Современные технологические процессы и оборудование в машиностроении» (г.Чебоксары, 1999 г.), международной научно-практической конференции «Метрологическое обеспечение испытаний и сертификации» (г. Москва, 1999 г.), VIII международном семинаре «Структура дислокаций и механические свойства металлов и сплавов» (г. Екатеринбург, 1999 г.), международной научно-технической конференции «Энергосбережение, экология и безопасность» (г. Тула, 1999 г.), VI Всероссийской научно-технической конференции «Состояние и проблемы измерений» (г. Москва, 1999 г.), Всероссийской научно-технической конференции «Диагностика веществ, изделий и устройств» (г. Орел, 1999 г.), Всероссийской научно-практической конференции «Технологическое обеспечение качества машин и приборов» (г. Пенза, 2004 г.), общероссийской юбилейной научной конференции с международным участием «Современные проблемы науки и образования» (г. Москва, 2005 г.), IV общероссийской научной конференции с международным участием «Новейшие технологические решения и оборудование» (г. Москва, 2006 г.), международной научной конференции «Современные проблемы науки и образования» (Болгария, г. София, 2006 г.), I международной научной конференции «Приоритетные направления развития науки» (США, г. Нью-Йорк, 2007 г.), III Международной научно-технической конференции «Прогрессивные технологии в современном машиностроении» (г. Пенза, 2007 г.), VIII Всероссийской научной конференции «Успехи современного естествознания» (г. Москва, 2007 г.).

Публикации. Общее количество опубликованных печатных работ по теме диссертации составляет 59, в том числе монографий – 2, в реферируемых журналах – 49. Новизна и оригинальность разработок конструкций и технологических процессов изготовления спеченных магнитных материалов и электротехнических изделий защищена 15 авторскими свидетельствами и 3 патентами на изобретения.

Автор выражает глубокую благодарность научному консультанту доктору физ.-мат. наук, проф. Е.Ф.Кустову, а также д.т.н., проф. М.В. Петрову, канд. физ.-мат. наук, доц. А.Ю. Мирошниченко за оказанную помощь при выполнении работы, критические замечания и рекомендации.

Структура и объем работы. Диссертационная работа состоит из введения, шести разделов, заключения и результатов работы, списка литературы из 253 наименований и включает 251 страницу машинописного текста, 146 рисунков, 42 таблицы. Общий объем работы 300 страниц.


© Научная электронная библиотека «Веда», 2003-2013.
info@lib.ua-ru.net