Электронная библиотека Веда
Цели библиотеки
Скачать бесплатно
Доставка литературы
Доставка диссертаций
Размещение литературы
Контактные данные
Я ищу:
Библиотечный каталог российских и украинских диссертаций

Вы находитесь:
Диссертационные работы России
Технические науки
Метрология и метрологическое обеспечение

Диссертационная работа:

Кононогов Сергей Алексеевич. Исследование проблем перехода к новым определениям единиц измерений, основанным на фундаментальных физических константах : диссертация ... доктора технических наук : 05.11.15 / Кононогов Сергей Алексеевич; [Место защиты: Всерос. науч.-исслед. ин-т метрологии им. Д.И. Менделеева].- Москва, 2009.- 334 с.: ил. РГБ ОД, 71 10-5/2

смотреть введение
Введение к работе:

Актуальность

В настоящее время международными и национальными метрологическими организациями проводится активная работа по подготовке начатого около 20 лет назад предполагаемого перехода в 2011 г. к новым определениям четырех основных единиц СИ: килограмма, ампера, кельвина и моля. В Резолюциях XXII Генеральной конференции по мерам и весам (ГКМВ) 2003 года и далее в Рекомендации Международного комитета мер и весов (МКМВ) 2005 г., а также Рекомендации Консультативного комитета по единицам (ККЕ) и Резолюции 12 XXIII ГКМВ, принятым в 2007 г., национальным метрологическим институтам предложено активизировать работы по всестороннему анализу проблем,, связанных с предстоящим переходом к новым определениям основных единиц СИ. Основное внимание необходимо уделить метрологическому анализу таких процедур реализации и передачи размеров основных единиц СИ, которые основаны на значениях фундаментальных физических констант (ФФК), определенных, в частности, с помощью квантовых эффектов в атомной физике, оптике и сверхпроводимости, а также исследованию проблем предстоящего перехода к новым определениям единиц СИ на основе ФФК.

Международная система единиц (СИ) включает в себя семь основных единиц: метр, килограмм, секунду, ампер, кельвин, моль и канделу, которым соответствуют семь основных величин: длина, масса, время, сила электрического тока, термодинамическая температура, количество вещества и сила света. Все остальные величины являются производными и образуются через основные единицы по заданным математическим правилам. При разработке определений основных единиц следует стремиться к тому, чтобы конкретная величина, используемая для определения единицы, была природным инвариантом. То есть, определения основных единиц должны быть в принципе реализуемы в любом месте, в любое время с точностью, которая необходима для практических измерений во всех областях науки и технологий, промышленности и торговли, так как необходима уверенность, что данные из самых различных сфер деятельности основаны на согласованных единицах.

Количественные характеристики всех практически используемых физических явлений в окружающем нас мире в принципе могут быть определены на основе существующих в настоящее время теорий фундаментальных взаимодействий – гравитационного, электромагнитного, слабого, сильного – и значений ФФК, используемых в этих теориях. Определение ФФК зависит от сформировавшихся к данному моменту времени физических теорий. Такими теориями сегодня являются Стандартная Модель (СМ) трех фундаментальных взаимодействий – сильного, электромагнитного и слабого – вместе с теорией гравитационного взаимодействия (ОТО - общая теория относительности), которая не объединена с другими фундаментальными взаимодействиями.. Особенностью СМ является зависимость констант связи и масс фундаментальных частиц от переданных во взаимодействиях импульсов, что приводит к изменениям значений многих констант. Это интересное явление чрезвычайно важно для физики и метрологии, поэтому требуется детальное изучение его следствий. Возможные медленные изменения значений ФФК со временем и на больших масштабах длин предсказываются также обобщенными теориями гравитации и многими моделями объединения всех четырех взаимодействий.

Экспериментальные данные, из которых можно получить ограничения на временные изменения констант взаимодействий, относятся к нуклеосинтезу элементов во время Большого взрыва, электромагнитным спектрам квазаров, лабораторным поискам изменений ФФК с помощью высокоточных часов, а также к геохимическому анализу состава элементов. Проводимый в диссертации анализ данных по возможным вариациям констант взаимодействий связан как с новейшими физическими исследованиями, так и с готовящейся реформой в фундаментальной метрологии – введением новых определений основных единиц системы СИ.

Открытие в 1998 г. ускоренного расширения Вселенной привело к интенсивному исследованию космологических моделей, предсказывающих также изменение со временем гравитационной постоянной G, постоянной тонкой структуры и других ФФК. В рамках объединенных теорий вариации различных констант взаимосвязаны, что следует учитывать при интерпретации существующих и планировании будущих экспериментов по проверке возможных вариаций ФФК и их влияния на точность и стабильность эталонов физических величин.

Быстрое развитие измерительной техники, основанное на использовании квантовых физических явлений, позволяет добиться высочайших точностей определения многих ФФК. Так, например, уровень относительных стандартных неопределенностей реализации частот переходов между состояниями с фиксированной энергией атомов цезия и ионов ртути достигает 10-16. Для повышения точности и стабильности измерений необходимо переходить к квантовым стандартам (эталонам). Такой переход является основным направлением совершенствования эталонной базы метрологических организаций многих стран. Разработка, внедрение и применение квантовых стандартов единиц физических величин наивысшей точности базируется на использовании значений ФФК, таких как скорость света c, постоянная Планка h, постоянная Больцмана k, массы и заряды элементарных частиц - электрона, протона и т. д. Более того, нахождение точных значений ФФК и повышение точности реализации физических единиц взаимосвязаны.

Проблема «физика и метрология» уже давно волнует учёных всего мира. Среди них можно назвать такие имена, как: B.W. Petley, E.R. Cohen, T.J Quinn, B.N. Taylor, I. Mills, V. Kose, C. Borde, Л.Б. Окунь, С.В. Горбацевич, Н.В. Студенцов и многих других.

Таким образом, исследование фундаментальных и прикладных метрологических проблем, связанных с выбором обоснованной совокупности ФФК и природных инвариантов, необходимых для определения единиц измерений, представляет собой важную и актуальную научную задачу. Такое исследование необходимо также и с точки зрения подготовки метрологической инфраструктуры страны к переходу на новые определения единиц.

Настоящая диссертационная работа посвящена метрологическому анализу связи ФФК и основных единиц СИ, современным способам определения ФФК, развитию метрологических приложений результатов точных измерений ФФК и всестороннему исследованию проблем предстоящего перехода к новым определениям единиц СИ на основе ФФК.

Основная цель работы заключается в выборе рационального способа построения системы единиц на основе ФФК. Для её достижения решаются следующие задачи:

– анализ точности определений, природы, роли и числа ФФК;

– исследование возможных способов реализации единиц СИ в соответствии с их новыми определениями и анализ последствий предлагаемых переопределений для эталонной базы страны;

– рассмотрение особенностей передачи размеров единиц при метрологическом обеспечении измерений в современных технологиях (нанотехнологиях, прецизионном машиностроении, спектрорадиометрии, электрических измерениях);

– исследование принципов построения эталонной базы при переходе к новым определениям единиц; анализ возможности её децентрализации и перехода от системы эталонов различного уровня к системе аттестованных калибровочных лабораторий, имеющих равный статус;

– исследование возможности перехода от жёстких поверочных схем с установленной градацией погрешностей к иерархическим схемам передачи размеров единиц с прослеживаемостью до исходного калибровочного средства с указанием неопределённости результата измерений;

– исследование влияния возможной нестабильности ряда ФФК на воспроизводимость единиц измерений и проведение анализа теоретических моделей, предсказывающих переменность ФФК.

Научная новизна работы

В процессе выполнения диссертационной работы проведен анализ существующих определений единиц измерений и проблем их реализации, показано, что последовательным и неизбежным является переход от естественных эталонов, связанных с природными процессами и их характеристиками, к системе единиц, основанной на точных значениях ФФК. Проанализирована связь такой фундаментальной системы единиц с существующей системой СИ.

Проанализированы особенности двух основных методов переопределения килограмма («электрический килограмм» и «атомный килограмм») и показано, что для повышения точности определения масс атомов и ряда ФФК использование «атомного килограмма», основанного на постоянной Авогадро и атомной единице массы, более перспективно, чем ватт-весы. Для согласования нового эталона единицы массы с существующей национальной системой передачи размера этой единицы необходимо, чтобы уровень 10-9 относительной стандартной неопределенности был принципиально достижим при сравнении нового эталона с Международным прототипом килограмма.

Показана принципиальная теоретическая возможность точного определения фундаментальной физической константы – постоянной Больцмана k на основе уравнения состояния воды в термодинамическом пределе. Это свидетельствует о принципиальной возможности и полезности переопределения кельвина на основе точного значения k.

Показано, что при определении единиц физических величин через ФФК возможно и необходимо существенное изменение принципов построения эталонной базы. Вместо единственного первичного эталона какой-либо основной единицы должна возникнуть совокупность равноправных измерительных систем (эталонов) хранения размеров единицы данной физической величины.

Показана необходимость постепенного преобразования жёстких поверочных схем передачи размеров единиц от первичного эталона к различным средствам измерений через цепочку эталонов последующих уровней. Наряду с такой схемой должны создаваться схемы передачи размеров единиц непосредственно от ФФК через измерительные системы (эталоны) к исходным калибровочным средствам с указанием неопределённости результатов измерений.

Получены оценки возможных вариаций ряда ФФК в некоторых теоретических моделях и проанализировано влияние этих вариаций ФФК на стабильность единиц физических величин и их эталонов.

Практическая значимость работы

Проведённые исследования позволяют разработать систему мер по переходу России к новым определениям единиц физических величин, согласованную с международными документами, сформулировать концепцию развития эталонной базы страны.

Анализ возможных вариаций ФФК позволяет получить оценки долговременной стабильности единиц физических величин. Представленный в диссертации подход в построении моделей многомерной космологии, объясняющий ускоренное расширение нашего трёхмерного пространства при достаточно малом значении временной вариации гравитационной постоянной, может широко использоваться для непротиворечивого согласования метрологических оценок вариаций фундаментальных констант с современными данными физических наблюдений и экспериментов, что очень важно для решения задач перехода к новым определениям, основанным на ФФК.

Проведённый анализ различных вариантов переопределения основных единиц СИ даёт возможность выбора наиболее рационального в настоящее время определения этих единиц на основе фиксации точных значений ФФК.

Основные положения, выносимые на защиту

1. Обоснование необходимости и возможности перехода к построению системы единиц на новом принципе – фиксации точных значений фундаментальных физических констант: скорости света, постоянной Планка, элементарного заряда, постоянной Больцмана и постоянной Авогадро.

2. Преимущество введения «атомного килограмма» для повышения точности определения масс атомов и ряда ФФК, по сравнению с «электрическим килограммом».

3. Достигнутый уровень точности значения постоянной Больцмана не даёт преимуществ при переходе к новому определению кельвина.

4. Обоснование возможности перехода к новым принципам построения эталонной базы, при использовании различных вариантов переопределения основных единиц СИ.

5. Особенности системы передачи размеров единиц при фиксации точных значений ФФК.

6. Реализация воспроизведения размеров единиц спектрорадиометрии на основе ФФК методом выделения отдельного электрона в ускорителе.

7. Реализация системы передачи размеров единиц от ФФК в области измерения длины, электрических величин и спектрорадиометрии показывает правильность и эффективность применения ФФК в измерениях.

8. Оценка принципиальной значимости возможных вариаций ФФК как для метрологии, так и для физики в целом.

9. Основные положения национальной стратегии и соответствующего плана действий по переходу на новые определения единиц СИ.

Достоверность и обоснованность результатов обусловлены использованием разработанных методов теоретической и математической физики, теории измерений. В ряде случаев полученные выводы и оценки сравнивались с результатами других авторов, полученными в рамках альтернативных методов и подходов.

Личный вклад

Исследования, результатам которых посвящена диссертация, проводились в течение длительного времени автором самостоятельно и совместно с другими исследователями. В диссертацию включены результаты, полученные лично автором, а также результаты, в получение которых автор внес существенный вклад:

Постановка научной задачи подготовки метрологической инфраструктуры страны к переходу на новые определения единицы СИ.

Проведение исследования фундаментальных и прикладных метрологических проблем, связанных с выбором обоснованной совокупности ФФК, необходимых для переопределения единиц измерений.

Личное участие в реализации перехода на использование ФФК в наноизмерениях, спектрорадиометрии и измерениях электрических величин.

Апробация диссертации

Основные результаты работы опубликованы в ведущих отечественных и зарубежных журналах, в монографии «Метрология и фундаментальные физические константы», научных семинарах, международных и российских конференциях, таких как:

1) 18-я Всесоюзная конференция по эмиссионной электронике, 1981, Москва, Россия.

2) VIII Всесоюзное совещание по ускорителям заряженных частиц, 1983, Протвино, Россия.

3) IX Всесоюзное совещание по ускорителям заряженных частиц, 1985, Дубна, Россия.

4) Всесоюзное совещание по синхротронному излучению (СИ-84), 1984, Новосибирск, Россия.

5) XI International Colloquium on Surfaces, February 2004, Chemnitz, Germany.

6) 3-я Международная выставка и конференция «Промышленный неразрушающий контроль», 17 марта 2004 г., Москва, Россия.

7) Международная конференция «Метрология и измерительная техника», 7-8 октября 2004 г., Харьков, Украина.

8) 9-я Всероссийская научно-техническая конференция «Состояние и проблемы измерений», МГТУ им. Н.Э. Баумана, 23-25 ноября 2004 г., Москва, Россия.

9) 6th International Conference “Research and Development in Mechanical Industry” (RaDMI 2006), 13-17 September 2006, Budva, Montenegro.

10) 5-я Международная научно-техническая конференция «Метрология и измерительная техника» (Метрология-2006), 10-12 октября 2006 г., Харьков, Украина.

11) Международная научно-техническая конференция «Метрология и метрологическое обеспечение», 26-27 апреля 2007 г., Минск, Белоруссия.

12) 5th International Conference on Computer Aided Design and Manufacturing 2007.

13) 6th International Conference on Computer Aided Design and Manufacturing 2008.

14) 10-я Всероссийская научно-техническая конференция «Состояние и проблемы измерений» 21-25 апреля 2008 г., МГТУ им. Н.Э. Баумана, Москва, Россия.

15) 13-th International Conference on gravitation, cosmology and astrophysics, June 23-28, 2008, Moscow, Russia.

16) 12-я Российская конференция по теплофизическим свойствам веществ, 7-10 октября 2008 г., Москва, Россия.

Публикации

По теме диссертации опубликована одна монография, 46 печатных работ, в том числе из них 36 статей в реферируемых журналах, входящих в список ВАК, сделано 29 докладов (начиная с 1981 г.) на международных и российских конференциях и получено одно авторское свидетельство.

Объём и структура диссертации

Диссертация состоит из введения, пяти глав, заключения и списка литературы. Объем диссертации – 334 страницы, включая 22 рисунка и 6 таблиц. Приведенная библиография содержит 565 названий.


© Научная электронная библиотека «Веда», 2003-2013.
info@lib.ua-ru.net