Электронная библиотека Веда
Цели библиотеки
Скачать бесплатно
Доставка литературы
Доставка диссертаций
Размещение литературы
Контактные данные
Я ищу:
Библиотечный каталог российских и украинских диссертаций

Вы находитесь:
Диссертационные работы России
Технические науки
Электротехнология

Диссертационная работа:

Лясникова, Александра Владимировна. Обоснование и реализация комбинированной механической и физико-химической обработки титановых деталей в ультразвуковом поле с учетом электроплазменного напыления композиционных покрытий : диссертация ... доктора технических наук : 05.09.10 / Лясникова Александра Владимировна; [Место защиты: Сарат. гос. техн. ун-т].- Саратов, 2009.- 320 с.: ил. РГБ ОД, 71 10-5/427

смотреть введение
Введение к работе:

Актуальность работы. Совершенствование технических систем различного назначения в современных условиях жесткой конкуренции и повышенных требований к точности, надежности, экологической безопасности, эргономичности и функциональности изделий невозможно без комплексного использования достижений в различных областях технических наук: теории резания, машиноведении, материаловедении. При этом тенденциями развития данных направлений являются нанотехнологические процессы создания материалов со специальными свойствами и модифицирования их поверхности, расширение объема применения финишных процессов формообразования, в том числе с применением комбинированных процессов механической и физико-химической обработки. При этом основной проблемой широкого использования новых материалов и процессов в производстве является неадекватность требований к свойствам поверхности изделий и основному объему материала. Как правило, материалы, выполняющие требуемые функции, либо являются малопрочными, либо, напротив, трудно поддаются размерной обработке и обычно имеют значительную стоимость. Сказанное относится к самому широкому классу изделий машино- и приборостроения: от элементов высокоточных опор и передач машин и приборов до изделий электровакуумного приборостроения и микроэлектроники, а также медицинской техники, обладающих весьма специфическими свойствами (эмиссионные, поглощение СВЧ-энергии, полупроводниковые, газодиффузионные, медико-биологические и т.п.).

Диссертационное исследование направлено на разработку комплекса методов комбинированной воздушно-абразивной и ультразвуковой обработки поверхности деталей под последующее напыление, электроплазменного напыления композиционных покрытий с повышенной пористостью и адгезией, а также финишной кавитационной размерной обработки высокопористых покрытий, обеспечивающих заданные характеристики изделий приборостроения и медицинской техники.

Благодаря работам отечественных ученых Н.Н. Рыкалина, В.В. Кудинова, Ю.А. Харламова, В.А. Клименова проблема обеспечения необходимых параметров работоспособности изделий достаточно успешно решается применением основы из недефицитных, прочных и технологичных материалов, процессы обработки которых хорошо освоены в производстве, а требуемые специальные функциональные свойства обеспечиваются нанесением на поверхность тем или иным методом покрытий, обладающих требуемой структурой и составом.

В настоящее время созданы научные основы ионно-плазменного и плазменно-дугового напыления покрытий, благодаря которым эти процессы обеспечивают формирование самого широкого их спектра от

тонких наноструктурированных пленок до покрытий толщиной в десятые доли миллиметра. Получены зависимости, позволяющие определять оптимальные режимы исходя из заданных свойств покрытий. Отмеченные исследования касались высокоплотных износостойких покрытий на режущем инструменте и высокоточных опорах скольжения, в которых чисто электротехнологическими методами за счет регулирования режимов плазменного напыления обеспечивается высокая прочность сцепления покрытия с основой (адгезия), а однородность структуры относительно высока. Это облегчает финишную размерную обработку. В указанных покрытиях не существует технологического противоречия: режимы, обеспечивающие адгезионно-когезионную прочность, не позволяют формировать высокопористые структуры. В ряде случаев при напылении высокопористых покрытий не выдвигаются требования к адгезии из-за относительно «легких» условий работы изделия.

Вопросы финишной обработки деталей машино- и приборостроения достаточно полно освещены в работах Д.Г. Евсеева, А.Г. Суслова, А.Н. Резникова, П.И. Орлова. А.Н. Мартыновым, А.Е. Проволоцким и др. созданы основы обработки деталей потоком свободного абразива. А.И. Марковым, Е.С. Киселевым, М.С. Нерубаем, В.Н. Подураевым, Б.Л. Штриковым и Дз. Кумабэ теоретически и экспериментально установлено повышение эффективности и точности процессов финишной обработки путем сообщения инструменту ультразвуковых колебаний. Установлены зависимости обработки покрытий после их нанесения с учетом неоднородности структуры, в том числе с использованием физико-химических процессов.

Однако к настоящему времени практически не установлены закономерности и не разработаны методы плазменного напыления и финишной размерной обработки высокопористых композиционных металлокерамических покрытий, обладающих одновременно большой адгезионно-когезионной прочностью, на высокоточных деталях из титановых сплавов, используемых в изделиях электровакуумной техники и других приборах. Это представляет достаточно серьезную проблему, поскольку не позволяет эффективно изготавливать соответствующие современным требованиям и перспективные изделия приборостроения и медицинского назначения, в частности мощные генераторные лампы и внутрикостные дентальные имплантаты.

На основании изложенного тема диссертации является актуальной для науки и практики.

Цель диссертационной работы. Теоретико-экспериментальное обоснование методологии формирования и комбинированной обработки покрытий из композиционных материалов со стабильно воспроизводимым комплексом физико-химических, механических и эксплуатационных свойств, находящихся в требуемом по условиям функционирования

изделия сочетании, на поверхности деталей из титана и его сплавов при дозированном ультразвуковом воздействии на деталь и покрытие в процессе их электроплазменного напыления и обработки.

Для достижения поставленной цели в работе решались следующие задачи:

  1. На основе анализа известных методов и средств формирования свойств покрытий обосновать новую методологию гарантированного обеспечения оптимального сочетания их физико-химических, механических и эксплуатационных свойств, исключающую их взаимное влияние.

  2. Теоретически и экспериментально обосновать возможность улучшения адгезионных свойств композиционных покрытий путем модифицирования поверхности основы в результате комплексной механической и физико-химической обработки.

  3. Теоретически и экспериментально обосновать метод финишной размерной обработки после напыления высокопористых покрытий, исключающий контакт их поверхности с инструментом.

  4. Теоретически и экспериментально обосновать метод электроплазменного напыления композиционных покрытий с заданным по условиям функционирования детали сочетанием компонентов и структурными элементами размерами в доли микрометра, обеспечивающими требуемый контакт сопрягаемых пористых поверхностей.

  5. Разработать рекомендации по формированию электроплазменным напылением композиционных покрытий различного состава, обеспечивающих повышение эффективности их функционирования.

  6. Практически апробировать и внедрить результаты исследований при формировании и обработке композиционных покрытий на деталях и узлах электровакуумных приборов, инструментах с абразивоподобными покрытиями для финишной обработки ряда деталей точной механики, а также вживляемых имплантатах и протезах.

Методы исследования. Теоретические исследования выполнялись с использованием базовых положений и фундаментальных основ абразивной, ультразвуковой, физико-химической обработки и плазменного напыления. При выводе теоретических зависимостей использованы основные уравнения математической физики с определенными автором граничными условиями, а также феноменологические модели основных физико-химических процессов. Экспериментальные исследования выполнялись с использованием теорий планирования эксперимента и регрессионного анализа.

При выполнении исследований использовались стандартные и оригинальные авторские методики с применением современной технологической и аналитической аппаратуры: установка плазменного напыления типа ВРЕС, ультразвуковая ванна ПБС-ГАЛС, электронные весы Scout (SPU202), экспериментальная электрохимическая ячейка, ультразвуковой генератор УГТ-901, аппарат абразивно-струйной обработки «Чайка-20», атомно-силовой мультимикроскоп СММ-2000, компьютерный анализатор изображений микроструктур АГПМ-6М, лазерный микроанализатор «Спектр-2000», рентгеновский дифрактометр «ДРОН-4», спектрометр PHI-6300, профилограф «Калибр 170623», сканирующий электронный микроскоп Philips SEM-515 и др.

Научная новизна диссертационной работы состоит в следующем:

  1. Предложена, теоретически и экспериментально подтверждена методология формирования требуемого сочетания механических, физико-химических и эксплуатационных свойств титановых деталей с плазмонапыленными композиционными покрытиями, согласно которой адгезионно-когезионные характеристики обеспечиваются в результате комбинированной механической и физико-химической обработки поверхности основы, параметры структуры и основной состав композиции - при электроплазменном напылении, эксплуатационные свойства и коррелирующий с контртелом микрорельеф поверхности - при финишной обработке покрытия.

  1. Предложен и обоснован критерий оценки микрорельефа поверхности компактных и пористых материалов в виде параметра относительной шероховатости. Получена модель микрорельефа для случая воздушно-абразивной обработки. Установлен факт увеличения относительной шероховатости поверхности титановых деталей с одновременным снижением разброса ее параметров при воздушно-абразивной обработке с воздействием ультразвука и последующем стимулированном ультразвуком электрохимическом травлении. Получены модели, адекватно описывающие кинетику процесса размерной комбинированной воздушно-абразивной и электрохимической обработки с воздействием ультразвука.

  2. Теоретически обоснована и экспериментально подтверждена принципиальная возможность размерной кавитационной обработки композиционных покрытий в ультразвуковом поле и установлена связь параметров рельефа и точности покрытия с акустическими режимами обработки. Получена модель, описывающая кинетику кавитационной размерной обработки без контакта с инструментом.

  3. Обоснована возможность существенного (до 40-50%) увеличения адгезионной прочности покрытия, напыленного на обработанную комбинированным воздушно-абразивным и электрохимико-ультразвуковым способом поверхность, и констатировано повышение

химической чистоты состава напыленного на нее покрытия. Получена теоретическая зависимость определения тока дуги плазмотрона с учетом дополнительной активации поверхности в процессе ее обработки, обеспечивающая минимизацию величины тока, что повышает стойкость элементов плазмотрона и уменьшает энергоемкость процесса.

  1. Обоснована возможность и получена модель формирования поверхностного слоя покрытия из структур с размерами до десятков нанометров при воздействии на напыляемый материал фокусированного ультразвукового поля.

  2. Обоснованы целесообразные состав и структурно-морфологические параметры композиционных плазмонапыленных покрытий изделий из титана для их использования в зависимости от назначения и конкретных условий эксплуатации. В частности, на примере обеспечения условий контакта искусственных и естественных материалов в изделиях медицинской техники установлены закономерности формирования в поверхностных структурах покрытия композиций с наночастицами серебра и лантана без влияния на них технологической наследственности предшествующих операций.

Практическая значимость результатов исследования:

  1. Определены рациональные режимы воздушно-абразивной и электрохимической обработки поверхности титановых деталей с воздействием ультразвука, обеспечивающие заданную точность, шероховатость и уровень энергетической активации.

  2. Определены режимы и разработаны предложения по созданию специальной установки для финишной кавитационной обработки поверхности пористых композиционных покрытий, полученных электроплазменным напылением.

  3. Разработаны технологические рекомендации по получению композиционных покрытий требуемого состава с различным содержанием компонентов с учетом конкретной ситуации применения и установлены рациональные режимы их плазменного напыления.

4. Результаты исследований внедрены и применяются при
производстве изделий электронной техники и точной механики в ЗАО
НПЦ «Алмаз-Фазотрон», ГУЛ «Радиоприборный завод», ФГУП «Базальт»,
ООО «Ультразвук-ТЕО», ФГУП НИИ «Волга», ОАО НПП «Контакт»,
000 «Стальтех», дентальных имплантатов с улучшенными
характеристиками в НПА «Плазма Поволжья» и 000 «Плазмабиомед»,
которые используются для лечения пациентов с полным и частичным
отсутствием зубов в медицинских учреждениях различных форм
собственности, в том числе Нижегородской государственной медицинской
академии (каф. «Челюстно-лицевая хирургия и имплантология»),

стоматологической клинике «Me детом» (г. Саратов) и др., что подтверждается актами внедрения.

5. По результатам диссертационного исследования подготовлены учебные пособия и курсы лекций для студентов технических и медикотехнических специальностей, которые внедрены в учебный процесс Саратовского государственного технического университета, Саратовского государственного медицинского университета и Московского государственного медико-стоматологического университета, что подтверждается соответствующими документами.

Достоверность проведенных исследований, научных положений, выводов и рекомендаций, полученных в работе, подтверждается согласованностью результатов теоретических и экспериментальных исследований, выполненных с применением современных методов и статистической обработкой данных, а также апробацией полученных результатов.

На защиту выносятся следующие основные положения:

  1. Модифицирование поверхности титановых деталей комбинированной воздушно-абразивной и физико-химической обработкой с воздействием ультразвука позволяет исключить взаимовлияние основных механических, физико-химических и эксплуатационных свойств плазмонапыленных композиционных покрытий, что обеспечивает их сочетание в соответствии с техническими требованиями к изделию.

  2. Сообщение основе при ее воздушно-абразивной обработке ультразвуковых колебаний и последующее стимулированное ультразвуком электрохимическое травление позволяют получить увеличение относительной шероховатости, снижение дисперсий размеров элементов микрорельефа, повысить адгезионную прочность покрытия при требуемой пористости, снижение тока дуги плазмотрона до 350 А, что обеспечивает уменьшение содержания продуктов разрушения катода и анода в составе покрытия до 0,1 %.

  3. Ультразвуковая кавитационная размерная обработка плазмонапыленного композиционного покрытия позволяет получить равномерную пористую структуру поверхности и точность размера в пределах 0,007-0,01 мм.

  4. Наложение на поток напыляемых частиц фокусированного высокоинтенсивного ультразвукового поля вызывает акустическое дробление исходных частиц на фрагменты размерами в десятки нанометров, что позволяет повысить надежность контакта покрытия с контртелом.

  5. Результаты экспериментальных исследований процессов воздушно-абразивной обработки поверхности титановых деталей и плазменного напыления композиционных покрытий с воздействием ультразвука, а также их кавитационной ультразвуковой обработки,

положенные в основу разработанных технологических рекомендаций, обеспечивают повышение точности и качества титановых деталей изделий приборостроения и медицинской техники.

Личный вклад соискателя состоит в определении и формировании основной идеи, темы и задач диссертационного исследования, постановке теоретических и экспериментальных исследований и их практической реализации, проведении обобщения полученных в ходе диссертационного исследования результатов. Отдельные результаты работы, касающиеся применения их в медицине, получены и опубликованы в соавторстве с сотрудниками Саратовского государственного медицинского университета и Московского государственного медико-стоматологического университета.

Апробация работы. Основные положения и результаты работы доложены и обсуждены на 36 научно-технических конференциях и семинарах, основными из которых являются: совещание участников Международного проекта ИНКО-КОПЕРНИКУС (г. Иена, Германия, 2003), 22nd European Conference on Surface Science «ECOSS 22» (Praha, Czech Republic, 2003), Международной научно-практической конференции «Современные техника и технологии» (Томск, 2003, 2005), 7-й Международной конференции «Пленки и покрытия» (Санкт-Петербург, 2005, 2007, 2009), Международном форуме «Актуальные проблемы современной науки» (Самара, 2005, 2006), Международном симпозиуме «Композиты XXI века» Саратов, 2005), Второй Международной научно-практической конференции: «Исследование, разработка и применение высоких технологий в промышленности» (Санкт-Петербург, 2006), Международном симпозиуме «Динамические и технологические проблемы механики конструкций и сплошных сред» (Москва, 2007), Международной научно-технической конференции «Современная электротехнология в машиностроении» (Тула, 2007), 1 Международной научной конференции «Современные методы в теоретической и экспериментальной электрохимии» (Плес, 2008), VIII Международной научной конференции «Химия твердого тела и современные микро- и нанотехнологии» (Кисловодск, 2008), Международной научно-технической конференции «Нанотехника и наноматериалы» (Москва, 2009), Международной научно-технической конференции «Проблемы электротехники, электроэнергетики и электротехнологии» (Тольятти, 2009), Международной научно-практической конференции «Современные наноматериалы и технологии их обработки» (Жуковский, 2009), Всероссийской научно-технической конференции с участием зарубежных специалистов «Вакуумная наука и техника» (Судак, 2003, 2004, 2005), Всероссийской научно-технической конференции «Современная электротехнология в промышленности России» (Тула, 2003, 2004), Всероссийской научно-технической конференции с международным участием «Материалы и упрочняющие

технологии» (Курск, 2003), XXVI Российской школе по проблемам науки и технологий (Екатеринбург, 2006), Всероссийском Совещании материаловедов России «Прогрессивные технологии обработки материалов» (Ульяновск, 2006), Всероссийская научно-технической конференции с участием зарубежных специалистов «Вакуумная наука и техника» (Сочи, 2006, 2007, 2008), 3-й Всероссийской конференции «Актуальные проблемы электрохимической технологии» (Саратов, 2008), Всероссийской научно-технической конференции «Повышение эффективности механообработки на основе моделирования физических явлений» (Рыбинск, 2009).

Публикации. По материалам диссертации опубликованы 132 печатные работы, в том числе 15 статей в журналах, рекомендованных ВАК РФ по специальностям диссертации, 2 статьи в изданиях ВАК РФ по смежным специальностям, 4 монографии. Получено 4 патента РФ.

Структура и объем работы. Работа состоит из введения, 5 глав и заключения, содержит 80 рисунков, 20 таблиц и приложения. Общий объем диссертации составляет 320 страниц. Список литературы состоит из 280 наименований.


© Научная электронная библиотека «Веда», 2003-2013.
info@lib.ua-ru.net