Электронная библиотека Веда
Цели библиотеки
Скачать бесплатно
Доставка литературы
Доставка диссертаций
Размещение литературы
Контактные данные
Я ищу:
Библиотечный каталог российских и украинских диссертаций

Вы находитесь:
Диссертационные работы России
Технические науки
Строительная механика

Диссертационная работа:

Кондрашов, Владимир Владимирович. Анализ напряженно-деформированного состояния сетчатых пластин и стержневых плит на основе континуальной и дискретной расчетных моделей с учетом деформации поперечного сдвига : диссертация ... кандидата технических наук : 05.23.17 / Кондрашов Владимир Владимирович; [Место защиты: Волгогр. гос. архитектур.-строит. ун-т].- Волгоград, 2011.- 164 с.: ил. РГБ ОД, 61 11-5/1678

смотреть введение
Введение к работе:

Актуальность темы. Сетчатые пластины и оболочки широко используются в различных областях техники и особенно в строительстве. Сетчатые системы применяются не только как самостоятельные конструкции, но и как подкрепляющие элементы. Конструктивно сетчатые системы являются регулярными или циклически регулярными стержневыми системами с унифицированными узловыми соединениями. При этом сами стержни могут быть в свою очередь сложными конструкциями (ферменный или рамный составной стержень, многоветвевой составной стержень, многослойный стержень из композиционных материалов с пониженной сдвиговой жесткостью и т.д.). С внедрением в инженерную практику сетчатых систем возникла необходимость разработки теории и методов их расчета.

Все исследования по решению этой проблемы можно отнести к одному из двух основных направлений: исследования, основанные на дискретной расчетной модели, и исследования, основанные на континуальной расчетной модели.

Расчеты по дискретной модели осуществляются методами строительной механики, в том числе и по МКЭ. При большом числе узлов и стержней возникают существенные трудности численной реализации этой модели.

Это обстоятельство привело к разработке других подходов, позволяющих существенно понизить порядок разрешающей системы уравнений (метод суперэлементов, конденсационные методы, метод обобщенных неизвестных, метод дискретных конечных элементов). Наиболее полно это направление представлено работами В.А. Игнатьева и его учеников.

Сущность континуальной модели заключается в том, что область с густой сеткой узлов может быть заменена некоторой эквивалентной пластиной или оболочкой. Наибольший вклад в это направление внесен работами Г.И. Пшеничнова, Г.И. Беликова, В.И. Волченко, В.В. Кузнецова, В.В. Пономарева, И.Г. Тагиева, Л.В. Лозы и др.

Каждое из этих двух расчетных моделей имеет свои преимущества и недостатки. Исследования, основанные на этих моделях успешно развиваются и совершенствуются, взаимно дополняя и обогащая друг друга.

Одним из путей совершенствования этих моделей является их уточнение, связанное со специфическим поведением стержней имеющих низкую сдвиговую жесткость.

Теориям и методам расчета сплошных пластинок и оболочек посвящено большое количество статей и монографий. Однако для сетчатых систем уточнение классической теории на базе сдвиговой модели по-прежнему является актуальной задачей и представляет несомненный практический интерес.

Целью диссертационной работы является разработка усовершенствованных методов анализа напряженно-деформированного состояния сетчатых пластин и стержневых плит по континуальным и дискретным расчетным схемам с учетом деформации поперечного сдвига.

Для достижения цели поставлены следующие задачи:

-построить более совершенные расчетные модели, уточняющие теорию упругих сетчатых пластин, стержневых плит и составных стержней;

- разработать теоретические основы методов и алгоритмы исследования напряженно-деформированного состояния сетчатых пластин и стержневых плит с учетом деформации поперечного сдвига для решения задач статики, динамики и устойчивости;

- построить матрицы жесткости, масс и потенциала нагрузки конечного элемента – стержня с учетом деформации поперечного сдвига; - провести решение задач статики, динамики и устойчивости составных стержней и сетчатых пластин с различными типами сеток и характеристиками материала на базе усовершенствованных континуальной и дискретной расчетных схем;

- дать оценку влияния податливости материала, топологии сетчатых пластин и составных стержней на напряженно-деформированное состояние, частоты свободных колебаний и критические нагрузки.

Научную новизну диссертационной работы составляют:

- уточненная модель упругих сетчатых пластин на базе континуальной расчетной схемы повышающая точность расчетов;

- матрицы жесткости, матрицы масс и матрицы потенциала нагрузки конечных элементов – составных стержней и стержней из композиционных материалов, позволяющие на основе МКЭ исследовать степень влияния деформации поперечного сдвига на напряженно-деформированное состояние сетчатых конструкций (стержневых плит и пластинок);

уравнения состояния расчётной модели и зависимости, позволяющие осуществлять обратный переход к усилиям в стержнях;

- основные уравнения теории упругих сетчатых пластин и составных стержней на базе континуальной и дискретной модели с учетом деформации сдвига;

- методика и алгоритм расчёта сетчатых пластин, образованных сплошными и составными стержнями на основе дискретной и континуальной расчётных схем в задачах статики, динамики и устойчивости;

решение задач статики, динамики и устойчивости составных стержней и сетчатых пластин, с различными типами сетки и характеристиками материала;

оценка влияния податливости материала, топологии сетчатых пластин и составных стержней на напряжённо-деформированное состояние, частоты свободных колебаний и критические нагрузки.

Достоверность результатов работы подтверждается сравнением результатов расчета по различным расчетным схемам, с данными результатами других ученых.

Достоверность базируется на корректной математической постановке задач, использовании апробированных исходных положений и соотношений теории сетчатых пластин, анализе всех этапов решения.

Хорошее совпадение сравниваемых результатов, дает основание считать их достоверными.

Практическая ценность работы состоит в разработке методик и алгоритмов определения напряженно-деформированного состояния сетчатых пластин и составных стержней в задачах статики, динамики и устойчивости с учетом поперечного сдвига.

Произведено численное исследование сетчатых пластин и стержневых плит с оценкой влияния учета деформации поперечного сдвига и топологии сетчатых пластин и составных стрежней.

Данные методики могут найти применение в практике проектирования и исследования сетчатых пластин и стержневых плит.

Внедрение результатов. Материалы диссертационной работы получили внедрение в учебном процессе Волгоградского государственного архитектурно-строительного университета.

Апробация работы. Основные положения и результаты работы докладывались и обсуждались:

- IV Международной научно-технической конференции «Надёжность и долговечность строительных материалов, конструкций и оснований и фундаментов» (Волгоград, май 2005 г.);

- Всероссийской научно-технической конференции «Социально-экономические и технологические проблемы развития строительного комплекса и жилищно-коммунального хозяйства региона» (Волгоград, ноябрь 2006 г.);

- VIII Международной научно-технической конференции «Информационно-вычислительные технологии и их приложения» (Пенза, июнь 2008 г.);

- IV Международной научно-технической конференции «Наука, техника и технология XXI века» (Нальчик, октябрь 2009);

- ежегодных конференциях профессорско-преподавательского состава Волгоградского государственного архитектурно-строительного университета.

Публикации. Основные результаты выполненных исследований опубликованы в 9 научных статьях, в том числе 3 статьи в изданиях из перечня, определенного Высшей аттестационной комиссией Министерства образования и науки Российской Федерации.

Структура и объем работы. Диссертационная работа состоит из введения, четырех глав, заключения, списка литературы из 260 наименований, содержит 44 рисунков и 14 таблиц. Основное содержание работы изложено на 129 страницах машинописного текста.

Соискатель выражает благодарность д.т.н., профессору, заведующему кафедрой Строительная механика ВолгГАСУ Игнатьеву Владимиру Александровичу за оказанную помощь и консультации в ходе выполнения диссертационной работы.


© Научная электронная библиотека «Веда», 2003-2013.
info@lib.ua-ru.net