Электронная библиотека Веда
Цели библиотеки
Скачать бесплатно
Доставка литературы
Доставка диссертаций
Размещение литературы
Контактные данные
Я ищу:
Библиотечный каталог российских и украинских диссертаций

Вы находитесь:
Диссертационные работы России
Технические науки
Радиотехнические устройства и средства телекоммуникаций

Диссертационная работа:

Медведев Павел Александрович. Разработка методов обработки сигналов мобильных систем связи малого радиуса действия при представлении несущей динамической моделью в пространстве состояний: автореферат дис. ... кандидата технических наук: 05.12.13 / Медведев Павел Александрович;[Место защиты: ФГБОУ ВПО «Российский государственный университет туризма и сервиса»].- Москва, 2012.- 23 с.

смотреть введение
Введение к работе:

Актуальность работы. В настоящее время мобильная связь является быстрорастущим сегментом рынка телекоммуникаций. Особое распространение получают минисотовые системы связи или мобильные системы связи малого радиуса действии (МРД) (Short Range Devices – SRD), так как они позволяют быстро без больших трудозатрат организовать локальные сети и в целом повысить пропускную способность территориальных систем беспроводной связи.

Как правило, в таких системах связи поступающий в приемную антенну сигнал является композицией сигналов, прошедших различные пути и имеющих различную задержку и амплитуду. Такой композитный сигнал может очень быстро и в широких пределах изменяться по амплитуде и фазе. В результате ухудшаются характеристики модуляционных схем по сравнению с каналом с постоянными параметрами и аддитивным белым гауссовским шумом.

В настоящее время разработано довольно много методов, позволяющих в тех или иных условиях повысить эффективность работы систем мобильной связи. Особо хочется отметить достижения в этой области отечественных специалистов, таких как: Л.М. Финк, И.С. Андронов, С.Е Фалькович, В.И. Понамарев, Ю.В. Шкварко, В.И. Тихонов, Д.Д. Кловский, П.Ф. Поляков, а также зарубежных ученых: Г. Ван Трис, Б. Уидроу, Дж. Возенкрафт, И. Джекобс, Э.Д. Витерби.

Для повышения помехоустойчивости используют более сложные схемы модуляции, например – относительную (дифференциальную) квадратурную фазовую манипуляция, много h-фазовую модуляцию (MhФМ) и др.

Эффективным способом борьбы с замираниями является способ измерения параметров канала. Для этого часто используют пилот-сигнал и вспомогательную модуляцию пилот-сигнала. Применяют также способ оценки параметров канала с использованием решения по обратной связи.

Другой класс методов борьбы с затуханиями использует прием сигналов на разнесенные в пространстве антенны или разнесение по времени с последующим формированием суммарного сигнала. Используют также частотное разделение, при котором сигналы передаются на разных частотах. В последнее время для борьбы с затуханием и межсимвольной интерференцией стал использоваться сигнал, формируемый из многих ортогональных частот, OFDM – orthogonal frequency division multiplexing – или сигналы с ортогональным частотным разделением каналов (ОЧРК).

В настоящее время применение находят многомерные сигналы с пространственно-временным кодированием и пространственным уплотнением. В системах мобильной связи 4-го поколения (4G) используются системы с множеством входов и множеством выходов (МВМВ) или multiple-input-multiple-output (MIMO).

Проведенный анализ влияния многолучевого распространения сигнала в минисотовых системах связи показал, что такие каналы относятся к каналам с равномерной частотной и с линейной фазовой характеристикой. Отражение радиоволн при распространении осуществляется в основном от бетонных или кирпичных стен, потолков и деревянных полов, которые не имеют зависимость коэффициента отражения от частоты несущей, поэтому такой канал не является селективным по частоте. Так как параметры отражения не изменяются, то канал не подвержен медленным замираниям. Поэтому основной причиной затухания в рассматриваемом канале является сложение многих лучей с разной фазой, в результате чего может уменьшиться амплитуда сигнала и произойдет фазовый сдвиг. Как показали расчеты, сдвиг несущей разных лучей при ограниченных размерах пространства, не превышает длины волны. Однако, чем ближе абоненты находятся друг от друга и чем выше расположены их антенны, тем больше может быть расхождение фазы и выше вероятность глубоких замираний.

В силу ограниченности пространства и малой скорости передвижения абонентов системы, влияние доплеровского сдвига частоты на помехоустойчивость несущественно.

Приведенные оценки помехоустойчивости показали, что многолучевость и соответственно замирания, существенно уменьшают эффективность передачи информации по таким каналам. В последние годы при анализе помехоустойчивости предпочтение отдается методу представления стохастических дифференциальных уравнений, описывающих изменения информационных и неинформационных параметров моделью в пространстве состояний (ПС). На основе такого представления синтезированы оптимальные рекурсивные алгоритмы оценки информационных и неинформационных параметров сигнала. Самым известным алгоритмом является фильтр Калмана (ФК). ФК синтезирован как для линейных так и нелинейных связей выходного сигнала с вектором информационных параметров. Известны модификации ФК для коррелированных с сигналом помех.

Однако, кроме информационных и неинформационных параметров, динамической моделью в пространстве состояний можно представить и сами сигналы, несущие информацию. В последние годы произошли грандиозные успехи в повышении быстродействия микросхем и процессоров. Сейчас уже есть процессоры с тактовой частотой несколько гигагерц. Ожидается, что с развитием нанотехнологий данные скорости могут быть существенно превышены, поэтому реальной становится задача представления моделью в пространстве состояний самой гармонической несущей на промежуточной частоте и использование рекуррентных алгоритмов для её оценки.

Все это делает диссертационную работу весьма актуальной.

Объектом исследования являются модуляторы и демодуляторы сигналов.

Предметом исследования являются методы демодуляции и приема сигналов в условиях многолучевости.

Целью диссертационной работы является: разработка алгоритмов приема сигналов при многолучевом распространении на основе представления гармонической несущей динамической моделью в ПС.

В соответствии с этим были поставлены и решены следующие основные задачи:

  1. Разработать динамическую модель в ПС многолучевого канала минисотовых систем связи, найти статистические характеристики параметров модели, определить степень адекватности модели реальным каналам.

  2. Осуществить синтез оптимальных алгоритмов приема многолучевых сигналов с основными видами манипуляции на базе разработанной динамической модели, провести анализ помехоустойчивости приема.

  3. Разработать алгоритмы идентификации параметров динамической модели с целью повышения помехоустойчивости приема систем минисотовой связи в условиях многолучевости.

  4. Провести анализ помехоустойчивости приема сигналов в многолучевом канале при использовании идентификации параметров модели.

Научная новизна работы заключается в следующем:

  1. Разработана динамическая модель многолучевого канала на базе модели несущей в пространстве состояний.

  2. Синтезированы оптимальные приемники сигналов в условиях многолучевости на базе динамической модели многолучевого канала.

  3. Проведен анализ помехоустойчивости разработанных методов.

  4. Разработаны методы оценки параметров многолучевых каналов путем идентификации матрицы многолучевого канала динамической модели.

Практическая значимость работы заключается в следующем:

  1. Полученные методы обработки позволят повысить помехоустойчивость приема сигналов в мобильных системах связи в условиях многолучевости.

  2. Синтезированные алгоритмы приема на основе рекуррентной обработки сигналов с использованием фильтра Калмана позволят упростить приемники, так как они не требуют системы оценки и слежения за фазой.

Методы исследования основываются на использовании теории оценивания и статистических решений, теории оптимального управления, теории матриц и теории случайных процессов, а также методов имитационного моделирования.

Достоверность и обоснованность результатов исследования подтверждена строгостью применяемых математических методов, рецензированием работ, опубликованных в центральной печати, согласованием основных теоретических научных положений с результатами имитационного моделирования демодуляции сигналов АМ, ЧМ, ФМ на основе динамической модели в пространстве состояний.

Основные результаты и положения, выносимые на защиту.

Динамическая модель многолучевого канала на базе модели несущей в пространстве состояний.

Методы оптимального приема многолучевого сигнала на базе динамической модели.

Методы оценки параметров многолучевого канала путем идентификации матрицы выхода его динамической модели.

Научные результаты и практические рекомендации реализованы в рамках госбюджетных и научно-исследовательских работ ФГБОУ ВПО «Российский государственный университет туризма и сервиса» (ФГБОУ ВПО «РГУТиС»), в том числе по ЕЗН Федерального агентства по образованию РФ (МГУС – 1.5.06 № ГР 0120.0602528, Инв. № 022.006.07868) «Исследование цифровых методов обработки информационных потоков в электротехнических системах при интенсивных электромагнитных воздействиях», а также (РГУТиС – 1.6.09 № ГР 01200902038) «Разработка новых математических и методологических подходов к созданию информационных технологий в системах управления коммуникационной инфраструктуры «интеллектуальных зданий». Результаты диссертационной работы использованы в ООО «Группа СпецБизнесПроект», что подтверждается актом о внедрении.

Результаты диссертационной работы в виде алгоритмов и программ используются в учебном процессе ФГБОУ ВПО «РГУТиС» по дисциплинам «Устройства цифровой обработки сигналов», «Статистическая радиотехника», «Методы цифровой обработки сигналов», а также в дипломных проектах, что подтверждается соответствующим актом о внедрении.

Апробация работы. Основные положения диссертационной работы докладывались и обсуждались: на 15-й Международной научно-технической конференции «Наука – сервису» (Москва, 2010 г.); на 5-ой Международной научно-практической конференции «Наука – промышленности и сервису» (Тольятти, 2010 г.); на 7-й Межвузовской научно-практической конференции «Проблемы развития электротехнических комплексов и информационных систем» (Москва, 2011 г.); на 1-ой Международной научно-технической конференции «Информационные технологии. Радиоэлектроника. Телекоммуникации» (ITRT–2011)» (Тольятти, 2011 г.); на заседаниях кафедры ФГБОУ ВПО «РГУТиС» «Информационные системы и технологии» (Москва, 2010–2011 гг.).

Публикации. По теме диссертационной работы опубликовано 7 печатных работ, в том числе 5 работ в рецензируемом журнале из списка ВАК.

Структура и объем работы. Диссертационная работа состоит из введения, четырех глав с выводами, заключения, списка литературы (106 наименований) и приложения. Основной текст работы изложен на 163 страницах машинописного текста, поясняется 43 рисунками и 5 таблицами. В приложении на двух страницах содержатся материалы внедрения результатов диссертационной работы.


© Научная электронная библиотека «Веда», 2003-2013.
info@lib.ua-ru.net