Электронная библиотека Веда
Цели библиотеки
Скачать бесплатно
Доставка литературы
Доставка диссертаций
Размещение литературы
Контактные данные
Я ищу:
Библиотечный каталог российских и украинских диссертаций

Вы находитесь:
Диссертационные работы России
Технические науки
Технология редких, рассеянных и радиоактивных элементов

Диссертационная работа:

Рябцев, Александр Дмитриевич. Переработка литиеносного поликомпонентного гидроминерального сырья на основе его обогащения по литию : автореферат дис. ... доктора технических наук : 05.17.02 / Рябцев Александр Дмитриевич; [Место защиты: Нац. исслед. Том. политехн. ун-т].- Томск, 2011.- 39 с.: ил. РГБ ОД, 9 12-1/2701

смотреть введение
Введение к работе:

Актуальность проблемы

За последние сорок лет мировой уровень потребления литиевой продукции увеличился более чем в 2,5 за счёт появления новых бурно развивающихся отраслей (фармацевтики, производства синтетических каучуков, термоэластопластов, высокочистых литиевых солей, различных химических источников тока). Современное мировое производство литиевой продукции, в целом, отличается высокой стабильностью и имеет неплохую перспективу развития, поскольку открытие и разработка богатейших месторождений литиеносного гидроминерального сырья (ЛГМС) в Южной Америке произвели коренной переворот на рынке литиевой продукции за счет резкого снижения себестоимости переработки данного вида сырья в товарные литиевые соли, вообще, и в карбонат лития, в частности.

Производители литиевой продукции из твёрдоминерального сырья, в т.ч. российские, не выдержали конкуренции, многие производства оказались нерентабельными и были либо остановлены, либо существенно перестроены с учетом появления новых сырьевых источников. Лидерами производства литиевых продуктов из литиеносного гидроминерального сырья признаны компании «Cuprus Foot Minerals» (США), «FMC» (CША), «Minsal SA» (Чили) и «SQM» (Чили), которые используют в качестве сырьевого источника ставшие уже традиционным видом ЛГМС рассолы хлоридного натриевого типа саларов пустыни Атакама. Неисчерпаемые запасы ЛГМС с повышенным содержанием лития имеются и на Евроазиатском континенте в виде озерных рассолов хлоридного магниевого типа в провинции Цинхай (Китай) и глубинных рассолов хлоридного кальциевого типа в Иркутской области, Красноярском крае и Республике Саха (Россия). Однако ввиду высокого содержания кальция и магния, ЛГМС данных типов является нетрадиционным. Попытки переработки нетрадиционного ЛГМС в литиевые продукты реагентными методами, неоднократно предпринимаемые российскими и китайскими специалистами, до настоящего времени не привели к положительным результатам.

По мнению автора, решить проблему вовлечения в мировое литиевое производство новых нетрадиционных литиеносных гидроминеральных источников сырья в виде поликомпонентных рассолов хлоридного кальциевого и хлоридного магниевого типа и минерализованных вод Западной Сибири возможно только путем поиска новых решений, обеспечивающих возможность осуществления их безреагентного обогащения по литию с получением первичных литиевых концентратов, пригодных для переработки в конкурентоспособные литиевые продукты. На этой основе возможно создание безотходных технологий комплексной переработки поликомпонентных литиеносных рассолов любых типов, предусматривающих производство из них наряду с соединениями лития других востребованных на рынке товарных продуктов. При этом успешное решение проблемы безреагентного обогащения ЛГМС позволяет впервые обеспечить освоение и переработку в конкурентоспособные товарные литиевые продукты новых нетрадиционных литиеносных гидроминеральных сырьевых источников.

Все вышеизложенное предопределило выполнение данной диссертационной работы. Работа выполнялась на основании решения научно-технического совета № 7 «Сырьевая база и горно-технологические вопросы» Минатома РФ по вопросу «О проекте опытно-промышленного производства солей лития, брома и другой продукции из рассолов Знаменского месторождения гидроминерального сырья» от 01.10.98 в рамках: хоздоговоров с предприятиями «Якуталмаз (ныне ОАО «АЛРОСА»), ОАО «НЗХК», НГДУ «Белозернефть», АО «Черногорнефть», НПВФ «Брайнсиб», ООО «СПЕКТРУМ», ЗАО «Техрас»; международных контрактов и соглашений с иностранными фирмами Qinqhai Tienchi Rare Element Technology Development Co., LTD (Китай) и Eurosina Technology Consulting Proiect Development GmbH (Германия); междисциплинарного интеграционного проекта СО РАН «Технологии переработки нетрадиционных источников литиевого сырья («Литий России»); реализации инициативных планов ЗАО «Экостар-Наутех».

Цели и задачи работы

Целью работы является освоение и развитие сырьевой базы лития за счет вовлечения в мировое литиевое производство новых нетрадиционных литиеносных гидроминеральных сырьевых источников в виде высокоминерализованных природных рассолов хлоридного кальциевого и хлоридного магниевого типов и минерализованных вод Западной Сибири путем разработки технологий их комплексной и безотходной переработки, основанных на безреагентном обогащении ЛГМС по литию.

Поставленная цель достигается решением следующих основных задач:
1) обоснованием целесообразности расширения сырьевой базы лития за счет использования новых нетрадиционных источников ЛГМС путём их безреагентного обогащения на селективном сорбенте – хлорсодержащей разновидности двойного гидроксида алюминия, лития (ДГАЛ-Cl); 2) апробацией различных способов получения гранулированного сорбента ДГАЛ-Cl, разработкой технологии его производства и укрупненной её проверки; 3) разработкой технологии процесса безреагентного сорбционного обогащения целевого нетрадиционного ЛГМС с получением первичного литиевого концентрата; 4) переработкой получаемого безреагентным сорбционным обогащением ЛГМС первичного литиевого концентрата в товарные литиевые продукты с опробованием на пилотных и опытно-промышленной установках; 5) получением из ЛГМС литиевых продуктов, пригодных для применения в качестве сырья, в производстве металлического лития и его особо чистых солей; 6) получением попутной товарной продукции из целевого нетрадиционного ЛГМС хлоридного кальциевого типа; 7) попутным извлечением лития и других ценных компонентов из нецелевого ЛГМС; 8) разработкой концепций комплексной переработки различного типа ЛГМС, основанных на его сорбционном обогащении по литию.

Научная новизна

Впервые выполнен комплекс работ по освоению нетрадиционных источников литиеносного гидроминерального сырья различных типов, в рамках которого предложена новая классификация мировых запасов ЛГМС по уровню содержания лития и его способности безреагентно концентрироваться по литию, разработано химическое описание процесса безреагентного обогащения ЛГМС на гранулированном сорбенте ДГАЛ-Cl, экспериментально исследованы основные технологические операции процесса обогащения, определены рабочие сорбционно-десорбционные характеристики гранулированного сорбента ДГАЛ-Cl, установлены зависимости гидродинамического сопротивления слоя от скорости фильтрации и размера гранул.

Применительно к процессу получения порошка [LiAl2(OH)6]ClmH2O, составляющего основу гранулированного сорбента ДГАЛ-Cl, впервые изучено взаимодействие в системах LiOH – AlCl3 – H2O и Li2CO3 - AlCl3 - H2O, установлены механизмы фазообразования и определены оптимальные условия получения одностадийным химическим синтезом порошка [LiAl2(OH)6]ClmH2O. Разработана технология гранулирования порошка с использованием поливинилхлорида (ПВХ) в качестве связующего и метиленхлорида в качестве расворителя, включающая передел рекуперации МХ, основанный на результатах экспериментальных исследований процессов абсорбции паров МХ из газа – носителя маслом ХФ 22-16 и регенерации отработанного абсорбента термической десорбцией с одновременной конденсацией отводимых паров МХ.

Разработаны физико-химические основы процессов получения комплексной литийфторсодержащей добавки (КЛФД) для модификации электролита в производстве алюминия (LiF+MgF2+CaF2), и солей лития LiF, Li2CO3, LiCl из первичного литиевого концентрата, выделенного из нетрадиционного ЛГМС методом сорбционного обогащения .

Для получения Li2CO3 не содержащего натрий впервые исследовано взаимодействие в системе LiCl – NH4HCO3 - H2O и определены оптимальные условия процесса осаждения карбоната лития из хлоридных растворов углеаммонийной солью.

Предложены химические схемы получения моногидрата гидроксида лития марки ЛГО-1 через электромембранную конверсию в LiOH производимых из нетрадиционного ЛГМС солей LiCl и Li2CO3 и экспериментально исследованы составляющие их основу процессы: электрохимической конверсии растворов солей в раствор LiOH на ионообменных мембранах МК-40 и МФ-4СК-100, концентрирования конверсионного щелочного раствора, кристаллизации из него LiOH. H2O, отмывки кристаллов от маточного раствора и утилизации лития из маточных растворов кристаллизации и промывных вод.

Применительно к утилизации анодного хлора впервые изучено взаимодействие в системах: Cl2 - (NH2)2CO - H2O и Cl2 - (NH2)2CO - Li2CO3 - H2O и установлены оптимальные параметры процесса абсорбции хлора водной пульпой карбоната лития в присутствии карбамида.

Экспериментально изучены процессы получения из ЛГМС хлоридного кальциевого типа гидратированных хлоридов кальция (CaCl2.6H2O и CaCl2.3H2O), гидратированного хлорида магния (MgCl2.6 H2O) и оксида магния (MgO).

С целью получения жидкого брома из ЛГМС хлоридного кальциевого типа методом паровой десорбции впервые экспериментально исследованы процессы окисления бромид-ионов до элементного брома прямым хлорированием рассола и анодным электрохимическим окислением в электролизерах.

Разработана химическая схема получения LiBr из ЛГМС хлориднокальциевого типа и экспериментально исследованы в динамических условиях положенные в ее основу процессы: сорбции лития из очищенного от примесей первичного литиевого концентрата на катионите КУ-2-8чс в Н+- форме, десорбции лития из насыщенного катионита раствором бромистоводородной кислотой, синтеза бромистоводородной кислоты путем гидролиза брома в присутствии гидразина.

Экспериментально исследованы процессы электродиализного концентрирования нецелевого ЛГМС в виде сеноманской и подтоварной минерализованных вод применительно к получению тяжелых тампонажных рассолов для ремонта нефтяных скважин, установлены оптимальные условия и параметры, разработаны технологии попутного извлечения из тяжёлых рассолов лития, йода, брома и стронция перед использованием рассолов по прямому назначению.

Разработаны концепции комплексной переработки поликомпонетного ЛГМС различных типов, основанные на использовании технологии безреагентного обогащения по литию.

Практическая значимость работы

Разработана технология и аппаратурное оформление процесса безреагентного обогащения по литию ЛГМС любых типов на гранулированном сорбенте ДГАЛ-Cl, что позволяет не только вовлечь в мировое литиевое производство новые нетрадиционные виды литиеносных гидроминеральных сырьевых источников России и Китая и тем самым существенно укрепить сырьевую базу лития, но и значительно улучшить экологические и технико-экономические показатели производств, использующих традиционное ЛГМС Южной Америки.

Полученные результаты использованы при разработке технологических регламентов и исходных данных, по которым ЗАО «Экостар-Наутех» и ФГУП НГПИИ «ВНИПИЭТ» были выполнены рабочий проект (инв. № 87337 ПФ и инв. № 87338 ПФ) опытно промышленной установки извлечения лития из природных рассолов Знаменского месторождения Иркутской области годовой производительностью 800 т в пересчете на LiOH.H2O для ОАО «НЗХК», бизнес-план и технический проект пилотного предприятия по производству из литиеносного гидроминерального сырья хлоридного магниевого типа провинции Цинхай (Китай) карбоната лития годовой производительностью до 900 т для китайской компании Qinghi Tienchi Rare Element Technology, технико-экономическое обоснование строительства на промплощадке АО «Черногорнефть» производственных комплексов, включающих типовые станции получения тампонажных рассолов производительностью 480 м3/ч из минерализованных вод Западной Сибири и предприятия по попутному извлечению из тампонажных рассолов лития, йода, брома и стронциевого концентрата. Результаты диссертационной работы легли в основу экономического обоснования целесообразности строительства производств по комплексной переработке в различные товарные продукты поликомпонентного ЛГМС хлоридного кальциевого типа Ковыктинского месторождения Иркутской области, выполненного Институтом экономики и организации промышленного производства СО РАН совместно с ЗАО «Экостар-Наутех».

Полученные при выполнении диссертационной работы результаты были использованы ЗАО « Экостар-Наутех» пр разработке технологического регламента на получение из ЛГМС Знаменского месторождения Иркутской области гидратированного хлорида кальция, промышленное производство которого осуществлено ЗАО «Техрас» (г. Иркутск ).

Кроме того, выполненные исследования, результаты которых изложены в главах 6,7, послужили основой разработок типовых электрохимических модулей для получения хлорсодержащих окислителей производительностью 0,5-4,0 кг/ч по активному хлору (ТУ 3614-004-23599583-06, гигиенический сертификат № 54 НС.01.361. Т.008248.06) и типовых установок для получения воды питьевого качества из некондиционных артезианских и поверхностных солоноватых вод ДИАЛ-3 и ДИАЛ-5, в настоящее время выпускаемых ЗАО «Экостар-Наутех».

Положения выносимые на защиту:

1. Классификация литиеносного гидроминерального сырья (ЛГМС); обоснование целесообразности расширения сырьевой базы для получения лития и его соединений за счёт вовлечения в мировое производство нетрадиционных сырьевых источников ЛГМС, а именно рассолов хлоридного кальциевого и хлоридного магниевого типов, путем их безреагентного сорбционного обогащения на селективном неорганическом сорбенте – хлорсодержащей разновидности двойного гидроксида алюминия, лития дефектной структуры LiCl2Al(OH)3mH2O (ДГАЛ-Сl).

2. Закономерность образования при взаимодействии водорастворимых солей алюминия с гидроксидом лития твёрдой фазы двойного гидроксида алюминия и лития, отвечающей общей формуле [LiAl2(OH)6]z+1X-zmH2O (X – анион типа Cl-1, SO4-2, NO3-1 и т.п.; Z - валентность аниона), физико-химические основы одностадийного синтеза порошка ДГАЛ-Сl путем прямого взаимодействия хлорида алюминия с гидроксидом или карбонатом лития, закономерности и механизмы образования фазы LiCl2Al(OH)3mH2O, способы получения и технологии производства порошка ДГАЛ-Сl и гранулированного сорбента на его основе с рекуперацией метиленхлорида, используемого при его гранулировании в качестве растворителя.

3. Химическое описание процессов безреагентного обогащения ЛГМС по литию, равновесные и рабочие сорбционно-десорбционные показатели гранулированного сорбента ДГАЛ-Сl в динамических условиях ; технологическая схема процесса безреагентного сорбционного обогащения с получением первичного литиевого концентрата; аппаратурное оформление технологии обогащения в виде сорбционно-десорбционных обогатительных комплексов (СДОК).

4. Физико-химические основы процессов получения из первичных литиевых концентратов солей лития ( карбоната,фторида,хлорида) и литийфторсодержащих добавок (LiF+CaF2,+MgF2) для алюминиевой промышленности; способы получения и технологические схемы производства солей и добавок; результаты исследования равновесных и кинетических характеристик взаимодействия, протекающего в системе LiCl-углеаммонийная соль-H2O; способ получения из первичного литиевого концентрата карбоната лития не содержащего натрий и технология его производства.

5. Химические схемы получения LiOHH2O марки ЛГО-1 из первичного литиевого концентрата и карбоната лития путем конверсии раствора хлорида лития и раствора сульфата лития, воспроизводимого нейтрализацией Li2CO3 анолитом, в раствор гидроксида лития мембранным электролизом на мембранах МК-40 и МФ-4СК-100; результаты экспериментальных исследований по оптимизации параметров технологических операций, составляющих основу этих схем; результаты исследований взаимодействий в системах Сl2-(NH2)2CO- H2O, Сl2-(NH2)2CO- Li2CO3-H2O и Cl2 - бромидсодержащий рассол; способы утилизации анодного хлора абсорбцией с использованием в качестве абсорбента пульпы карбоната лития в присутствии карбамида или бромсодержащего рассола; безотходные технологические схемы производства моногидрата гидроксида лития марки ЛГО-1.

6. Теоретические основы технологии получения из ЛГМС хлоридно-кальциевого типа элементного брома и бромпродуктов, солей кальция и соединений магния, подтвержденные результатами экспериментальных исследований; способ получения брома марки «Б» разработанный по результатам исследования процесса электрохимического окисления Br- в Br2; способ и технология получения бромида лития из первичного литиевого концентрата и элементного брома; способ получения гидратированного хлорида кальция, основанный на охлаждении исходного рассола; способ получения магнезии, основанный на известково-карбонатном осаждении магния в виде основного карбоната 3MgCO3 Mg(OH)2 3H2O c последующим его прокаливанием.

7. Получение из нецелевого ЛГМС, на примере электродиализного концентрирования – опреснения минерализованных вод Западной Сибири, тяжелых рассолов, используемых для ремонта нефтеных скважин, с попутным извлечением из них лития, брома, йода и стронция перед применением по прямому назначению; физико-химические основы процессов, составляющих технологию получения тяжелых рассолов из нецелевого ЛГМС; разработанные по результатам экспериментальных исследований технологические схемы попутного производства товарных литиевых продуктов, брома, йода.

8. Концепции комплексной переработки различных типов ЛГМС на основе разработанной технологии сорбционного обогащения: нетрадиционного целевого ЛГМС хлоридного кальциевого типа Восточной Сибири (Россия); нетрадиционного целевого ЛГМС хлоридного магниевого типа провинции Цинхай (Китай); традиционного целевого ЛГМС хлоридно-сульфатного натриевого типа Южной Америки (Чили, Аргентина, Боливия); нецелевого ЛГМС хлоридного натриевого типа на примере минерализованных вод Западной Сибири.(Россия).

Апробация работы

Результаты работы докладывались на 2-ой Международной конференции по механохимии и механохимической активации (Новосибирск, 1997); на научно-техническом совете № 7 «Сырьевая база и горно-технические вопросы» Минатома РФ (Москва, 1998); на отраслевых конференциях по научному сотрудничеству ОАО «НЗХК» с научными учреждениями (Новосибирск, 1996-1999); на Международных конференциях по мембранной электрохимии (Туапсе, 1996,1999); Международной конференции по стратегии опреснения воды в странах Южного побережья Средиземного моря (Тунис, Джерба, 2000); на 7-ом Международном Фрумкинском симпозиуме «Фундаментальная электрохимия и электрохимические технологии (Москва, 2000); на Международной конференции «Металлургия легких металлов на рубеже веков. Современное состояние и стратегия развития» (Санкт-Петербург, 2001); на 6-ом Международном семинаре «Строительные и отделочные материалы. Стандарты ХХ столетия (Новосибирск, 2001); на Международной конференции «Мембраны в производстве питьевой и технической вод» (Германия, Мюльхейм на Руре, 2002); на семинаре РАН –ООО «Русский алюминий», «Новые электродные материалы для электродной промышленности (Новосибирск, 2002); на научно-техническом совете EurosinaTechnology Proiect Development GmbH (Германия, Берлин 2002, 2003); на научно-технических советах Qinghai Salt Like Industry Group Co.,LTD (Китай, Синин, 2002, Гэрму, 2004); на Международной научно-практической конференции «Физико-технические проблемы атомной энергетики и промышленности. Производство. Недра. Образование». (Томск, 2004); на II-ой научно-практической конференции «Решение водохозяйственных проблем в Сибирском регионе (Новосибирск, 2005 г); на секции №2 научно-технического совета корпорации « ТВЭЛ»( Новосибирск,
2007 г.)

Публикации

Основные результаты по теме диссертации опубликованы в 70 работах, включая: 2 монографии; 8 тезисов докладов на Международных конференциях; 35 статей, из них 30 в рецензируемых научных журналах, 3 в иностранных журналах, 2 в научных сборниках; 23 патентах РФ; 2 международных заявках РСТ. По теме диссертации выпущено 23 научно-технических отчёта, по которым разработано 7 технологических регламентов.

Личный вклад автора

Приведенные в диссертации результаты получены либо лично автором, либо при его непосредственном участии, либо при постановке им задач и его руководстве. Автору принадлежит формулировка целей и задач исследований, определение путей их решения и обобщение результатов работ.

В диссертации также использованы некоторые результаты совместных работ, включенных в докторскую диссертацию научного консультанта Н.П. Коцупало « Физико-химические основы получения селективных сорбентов и создание технологий извлечения лития с их использованием».

В работе принимали участие сотрудники ЗАО «Экостар-Наутех Л.Т. Менжерес, В.И. Титаренко, Е.В. Мамылова, А.А. Кураков, П.И. Шинкоренко, и сотрудники ОАО «Новосибирский «ВНИПИЭТ» Л.А. Серикова, Н.М. Немков, С.В. Сударев, Е.П. Гущина, Ю.В. Солодчин, А.В. Тен, Т.Г. Кораблина, И.Г. Нефедова. В разные годы содействовали выполнению работы руководители и сотрудники других отечественных и иностранных организаций: А.Г. Вахромеев, В.В. Рожков, В.В. Мухин, А.С. Тибилов, В.А. Волостных, С.А. Беляев, М.А. Ягольницер. Мг. San – Kwei Huang, Dr. – Ing Liang – Han – Hsieh, А.А. Цхай.

Диссертация изложена на 349 с., включая 70 таблиц и 153 рисунка и состоит из введения, восьми глав, заключения, списка цитируемой литературы из 351 наименований, и 25 приложений.


© Научная электронная библиотека «Веда», 2003-2013.
info@lib.ua-ru.net