Электронная библиотека Веда
Цели библиотеки
Скачать бесплатно
Доставка литературы
Доставка диссертаций
Размещение литературы
Контактные данные
Я ищу:
Библиотечный каталог российских и украинских диссертаций

Вы находитесь:
Диссертационные работы России
Технические науки
Автоматизированные системы управления и прогрессивные информационные технологии

Диссертационная работа:

Алешин Евгений Анатольевич. Энергосберегающая автоматизированная система управления тепловыми режимами в закрытых тепловых сетях зданий в условиях неопределенности : Дис. ... канд. техн. наук : 05.13.06 : Челябинск, 2003 162 c. РГБ ОД, 61:04-5/387-4

смотреть содержание
смотреть введение
Содержание к работе:

ПРЕДИСЛОВИЕ 5

л

ВВЕДЕНИЕ 6

ГЛАВА 1. АНАЛИЗ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ

КАК ОБЪЕКТА УПРАВЛЕНИЯ 13

1.1. Анализ характеристик системы централизованного теплоснабжения 13

1.2. Анализ теплотехнических характеристик абонентских теплопотребляющих пунктов 1.2.1. Виды тепловой нагрузки систем теплоснабжения 17

1.2.2. Способы присоединения абонентских теплопотребляющих установок к тепловым сетям 18

1.3. Анализ факторов теплового режима здания 21

1.3.1. Регулируемые параметры теплового режима 21

1.3.2. Возмущающие воздействия 24

1.3.3. Вероятностные и детерминированные факторы теплового режима здания 28

1.1.4. Задачи и методы автоматического регулирования і тепловым режимом здания 30

ГЛАВА 2. ПОСТРОЕНИЕ ОБЛАСТЕЙ КАЧЕСТВА ЭНЕРГОСБЕРЕГАЮЩЕГО УПРАВЛЕНИЯ ТЕПЛОВЫМ РЕЖИМОМ ЗДАНИЯ 40

2.1. Идентификация теплового режима здания на основе вероятностно-статистического подхода 40

2.2. Оценка областей качества теплового режима здания по результатам эксперимента 48

2.3. Синтез областей качества энергосберегающего управления тепловым режимом здания

ГЛАВА 3. ОПТИМИЗАЦИЯ УПРАВЛЕНИЯ ТЕПЛОВЫМ РЕЖИМОМ ЗДАНИЯ

В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ 65

3.1. Анализ методов решения задач оптимизации теплопотребления 65

3.1.1. Декомпозиция и выбор критерия качества 66

3.1.2. Динамическая и статическая постановка задачи оптимизации 67

3.1.3. Оптимизация по минимуму затрат тепловой энергии 70

3.1.4. Многоцелевая оптимизация режима потребления тепловой энергии 72

3.2. Синтез схемы и алгоритма оптимального управления системой теплопотребления 74

3.3. Применение аппарата теории игр для оптимизации управления системой теплопотребления 93

3.4. Динамические свойства системы отопления, состоящей из нескольких индивидуальных

тепловых пунктов 96

ГЛАВА 4. ТЕХНИЧЕСКАЯ РЕАЛИЗАЦИЯ ЭНЕРГОСБЕРЕГАЮЩЕЙ СИСТЕМЫ

АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ 104

4.1. Энергосберегающая система автоматического регулирования теплового режима административного здания 104

4.2. Энергосберегающая система автоматического регулирования тепловой энергии здания

по ул. Каслинской г. Челябинска 109 4.3. Автоматизация системы отопления и горячего

водоснабжения здания по ул. Воровского г. Челябинска 115

4.4. САР на базе контроллера ТА2222 для автоматизации теплового пункта здания УМНС России по Челябинской области 121

4.5. Автоматизация системы отопления и горячего водоснабжения здания в Советском районе г. Челябинска.. 130

ЗАКЛЮЧЕНИЕ 140

ЛИТЕРАТУРА 141

ПРИЛОЖЕНИЯ 150 

Введение к работе:

Проблема управления качеством теплового режима зданий при минимальных затратах тепловой энергии является одной из важных проблем в области систем теплопотербления. Это связано, в первую очередь, с усложнением алгоритма управления вследствие применения системного подхода в отличие от традиционного, при котором объекты управления рассматривались как автономные.

Среди множества задач, возникающих при решении проблемы управления качеством теплового режима, значительный интерес представляют задачи, связанные с исследованием влияния переменных внешней среды, а также режимных параметров на их выходную характеристику — показатель качества (внутренняя температура). Поэтому актуальна задача разработки методов и систем управления, позволяющих оценивать влияние параметров внешней среды и систем отопления на показатель качества теплового режима здания.

Результаты исследований, содержащиеся в работе, позволяют ответить на вопрос: когда и как надо воздействовать на систему отопления, чтобы обеспечить при минимальных затратах тепловой энергии требуемые показатели качества теплового режима в условиях изменяющихся случайным образом компонентах вектора контролируемых возмущений.

В работе предложен подход к решению задачи управления тепловой энергией, основанный на аппроксимации области функционирования подсистем "внешней среды" и теплового режима совокупностью подмножеств, образованных номиналами режимных параметров и являющихся областями качественного управления независимо от состояния текущих компонент вектора контролируемых возмущений. Используя для характеристики области допустимого качества управления номиналы параметров функции отклика, в работе даются рекомендации по управлению показателем качества теплового режима в пространстве состояний подсистем "внешней среды" и отопления.

ВВЕДЕНИЕ

В условиях рыночной экономики и значительного повышения цен на энергоресурсы особую важность приобретает задача эффективного использования тепловой энергии в системах теплоснабжения и отопления. Современное развитие систем теплоснабжения и отопления направлено на повышение эффективности их функционирования, разработку и внедрение систем автоматического управления ими с привлечением для решения задач идентификации и управления процессами теплопотребления новейших результатов теоретических и прикладных исследований. Настоящая работа освещает вопросы, связанные с построением многофакторных математических моделей, отражающих статистическую взаимосвязь контролируемых, неконтролируемых и управляющих параметров с показателем качества теплового режима здания, применением при синтезе и управлении энергосберегающих систем автоматического регулирования тепловой энергии статистических методов оптимизации, методов назначения допусков, теории игр и построения областей допустимого качества. Внимание также уделяется разработке метода управления тепловым режимом здания в условиях неопределенности при минимальных затратах тепловой энергии.

Большинство существующих систем отопления жилых и общественных зданий работают в неуправляемом режиме [76] и нагревательные приборы в течение длительного времени имеют завышенную мощность, что ведет к массовому перегреву воздуха в помещениях, перерасходу тепловой энергии и снижению теплового комфорта.

Задача регулирования отпуска теплоты на отопление является весьма сложной, поскольку регулируемый параметр - температура отапливаемых помещений зависит от большого числа как внешних, так и внутренних факторов, важнейшими из которых являются [81]: температура наружного воздуха, скорость и направление ветра, солнечная радиация, т.е. факторы, имеющие вероятностный характер; теплоаккумулирующая способность зданий, внутренние тепловыделения; гидравлический и температурный режимы системы теплоснабжения; схемы присоединения потребителей к тепловой сети.

Неизбежные ошибки предсказания по статистическим моделям заставляют назначать уровни регулируемых параметров с определенным запасом, который гарантирует получение заданного качества теплового режима здания. Смысл же корректировки параметров регулирования заключается в том, чтобы этот запас был минимальным, а расход тепловой энергии на отопление и горячее водоснабжение находился в зоне оптимума для каждого вектора контролируемых возмущений или совокупности таких векторов, образующих подмножества, в пределах которых настроечные регулируемые параметры малочувствительны к изменению вектора контролируемых возмущений.

Реальные параметры на входе объекта теплопотребления под действием различных дестабилизирующих факторов отклоняются от расчетных значений в широких пределах, что заставляет рассматривать подсистему теплопотребления как усредненную и в определенном смысле как стохастическую.

Существуют следующие подходы к автоматическому регулированию расхода теплоты на абонентских тепловых пунктах: по отклонению регулируемого параметра (по температуре воздуха в контролируемых помещениях), по возмущению (изменению наружных климатических условий), комбинированные методы (по возмущению и отклонению) [81].

Первый способ позволяет использовать наиболее простые регуляторы и наиболее целесообразен для систем отопления с пофасадным разделением, но, вместе с тем, возникают определенные трудности с выбором представительных помещений, контроля состояния линий связи и датчиков [76]. По мнению ряда организаций, данный принцип не стимулирует потребителей тепловой энергии к ее экономии. [75]. Второй метод регулирования (по возмущению) на абонентских тепловых пунктах реализуется путем поддержания заданного температурного графика в системе отопления в зависимости от наружных метеоусловий. К недостаткам этого метода относят сложность наладки системы регулирования и трудности правильного учета внешних регулирования и трудности правильного учета внешних метеорологических факторов [80].

Уменьшение массы стеновых конструкций и повышение процента остекления в современных полносборных зданиях привело к снижению их тепловой устойчивости и усилению влияния колебаний погоды (возмущающих воздействий) на регулируемый параметр (температуру воздуха) в отапливаемых помещениях.

На региональной информационно-практической конференции "Средства водо и теплоучета, используемые в Уральском регионе. Проблемы учета" и на Международной выставке "Энергосбережение в наше время", проведенными в г. Челябинске в 1994-1995 г.г. отмечено, что идет процесс автоматизированного учета тепловой энергии в связи с ее резким удорожанием. Это позволяет в ряде случаев только лишь переложить деньги из кармана производителя тепловой энергии в карман потребителя, т. е. исключить необоснованные затраты на тепловую энергию по нагрузке. При этом экономии тепловой энергии не создается, а материальные затраты на установку приборов коммерческого учета тепловой энергии возрастают повсеместно.

Изложенное позволяет сформулировать цель работы: разработка энергосберегающей автоматизированной системы и метода оптимизации управления теплопотреблением здания в условиях неопределенности.

Для достижения поставленной цели в диссертационной работе решаются следующие задачи:

1) анализ существующих методов и систем автоматизированного управления и автоматического регулирования расхода теплоты на абонентских тепловых пунктах;

2) разработка математической модели, отражающей взаимосвязь параметров внешней среды и системы теплопотребления с показателем качества теплового режима в виде эффективности управления; 3) построение областей качества, являющихся областями энергосберегающего управления в системах отопления зданий в условиях неопределенности;

4) разработка алгоритмической структуры функционирования энергосберегающей системы управления тепловыми режимами здания в условиях неопределенности, обеспечивающей реализацию режимных параметров, минимизирующих расход тепловой энергии;

5) анализ динамических свойств группы индивидуальных тепловых пунктов, объединенных коллектором со стороны источника питания или со стороны нагрузки, как объекта управления;

6) практическая реализация полученных результатов на объектах, являющихся потребителями тепловой энергии.

В первой главе приводится анализ существующей структуры и иерархии ступеней автоматического управления в системе централизованного теплоснабжения как объекта управления; сравниваются способы присоединения абонентских теплопотребляющих установок к тепловым сетям. При рассмотрении факторов теплового режима здания внимание уделяется регулируемым, управляющим и возмущающим параметрам, классификации их на вероятностные и детерминированные. Показаны, также, достоинства и недостатки различных методов автоматического управления отпуска теплоты на абонентских тепловых пунктах.

Во второй главе на основе анализа методов построения математических моделей управления режимами работы систем теплоснабжения выбирается и рассматривается вероятностно-статистический подход для идентификации теплового режима здания, отличительной особенностью которого является учет стохастического характера процессов, влияющих на тепловой режим. Здесь рассматриваются регрессионные модели, отражающие взаимосвязь параметров подсистем "внешняя среда" и "теплопотребления" с показателем качества теплового режима в виде эффективности управления. Третья глава посвящена оптимизации управления тепловым режимом здания в условиях неопределенности. Рассматриваются следующие задачи: синтез структуры системы автоматического управления тепловым режимом, обеспечивающей заданную эффективность управления при достижении требуемых значений номиналов настроечных параметров, разработка структурной схемы оптимальной системы и алгоритма оптимального управления тепловым режимом здания. В силу случайного изменения параметров "внешней среды" системы автоматического управления тепловым режимом практически никогда не работают при оптимальных номинальных настроечных параметрах [76]. В результате действия контролируемых и неконтролируемых переменных на входе подсистемы теплопотребления вектор режимных настроечных параметров перемещается в некоторой области. Задача синтеза оптимального управления и состоит в том, чтобы выбрать такую структуру АСУ и такие номиналы настроечных параметров, при которых вектор этих параметров с большей вероятностью не вышел бы за пределы этой области. 

В четвертой главе приведены результаты разработки и внедрения энергосберегающих систем автоматического регулирования тепловой энергии в закрытых тепловых сетях зданий. Энергосберегающие системы, реализующие метод оптимального управления в областях качества по экономическому критерию, отражающему функцию цены, и состоящие из подсистемы прогноза теплового режима и подсистемы автоматического регулирования теплового режима в зданиях с коммерческим учетом тепловой энергии, внедрены на различных объектах г. Челябинска.

Научная новизна результатов работы состоит в следующем:

1) создана многофакторная математическая модель, отражающая взаимосвязь параметров подсистем "внешней среды" и "теплопотребления" с показателем качества теплового режима в виде эффективности управления;

2) разработан метод энергосберегающего управления тепловыми режимами здания, позволяющий осуществлять коррекцию уставок режимных параметров регуляторов, обеспечивающих минимизацию энергопотребления; 3) разработана алгоритмическая структура функционирования энергосберегающей системы управления теплопотреблением здания в условиях неопределенности, обеспечивающая реализацию режимных параметров, минимизирующих расход тепловой энергии;

4) получено решение задачи оптимизации настроечных параметров и автоматизированного управления процессом потребления тепловой энергии в условиях неопределенности в виде совокупностей стратегий подсистем внешней среды и теплопотребления, являющихся седловой точкой средней эффективности управления и оценки управления, представляющей значение этой функции в седловой точке;

5) разработаны матричные структурные схемы системы отопления здания, состоящей из нескольких индивидуальных тепловых пунктов, на основе матричных уравнений, описывающих динамику системы отопления при действии возмущений как со стороны источника теплоснабжения, так и со стороны нагрузки, которые упрощают анализ динамических свойств системы отопления как объекта автоматического регулирования.

Практическая ценность результатов работы:

1) разработана методика синтеза энергосберегающей автоматизированной системы управления тепловыми режимами в закрытых тепловых сетях зданий в условиях неопределенности, предусматривающая учет взаимосвязи между подсистемами — "внешняя среда" — "теплопотребление" — "система коммерческого учета тепловой энергии" - ЛПР - САР;

2) разработана методика назначения тепловых режимов в зданиях на базе теории игр, обеспечивающих существенную экономию тепловой энергии на стадии отделочных работ внутри здания при отсутствии САР при наличии тепло счетчика;

3) разработаны и внедрены на объектах г. Челябинска энергосберегающие системы автоматического регулирования тепловой энергией, позволяющие получать до 30 % ее экономии. Апробация работы. Основные результаты работы докладывались и обсуждались на научно-технических конференциях ЮУрГУ (г. Челябинск, 1998-2000 гг.), специализированной выставке "Приборостроение-2002" (г. Екатеринбург).

Диссертационное исследование проводилось в рамках целевой Программы "Энергосбережение" Минобразования РФ и научно-исследовательской работы по гранту 103 Гр-98 "Создание методов оптимального управления и энергосберегающих систем автоматического регулирования тепловых режимов в закрытых тепловых сетях зданий", № гос. регистрации 01.980006958.

Основные положения и результаты работы отражены в 7 печатных работах и одном отчете "Создание методов оптимального управления и энергосберегающих систем автоматического регулирования тепловых режимов в закрытых тепловых сетях зданий" по научно-исследовательской работе в рамках гранта в области энергетики.

Структура и объем работы. Диссертация состоит из предисловия, введения, 4 глав, заключения, списка литературы из 102 наименований, 3 приложений. Работа изложена на 162 страницах печатного текста, содержит 37 рисунков, 9 таблиц. 

Подобные работы
Сурина Алла Валентиновна
Разработка методов формирования решений для автоматизированной системы оптимизации траектории развития производственных систем в условиях неопределенности внешней среды
Гольцов Анатолий Сергеевич
Синтез адаптивных систем автоматического управления нелинейными объектами в условиях априорной неопределенности
Сормов Сергей Игоревич
Автоматизированная система управления качеством процесса обработки деталей в условиях неопределенности
Асташин Сергей Михайлович
Управление режимами и процессами эксплуатации систем тягового электроснабжения на основе имитационного моделирования
Гойтина Екатерина Владимировна
Автоматизированное управление режимами тепловых сетей на основе макромоделирования
Гринкруг Яков Соломонович
Управление режимами работы дизельных электростанций в автономных сетях электроснабжения
Погонин Василий Александрович
Методы и алгоритмы управления химико-технологическими процессами с применением роботов в условиях неопределенности
Златин Павел Андреевич
Методология комплексного анализа и моделирования инновационных процессов автоматизации и управления пассажирскими автотранспортными предприятиями в условиях неопределенности
Смирнова Мария Сергеевна
Управление технологическими комплексами сборочно-монтажного производства в условиях неопределенности
Зарипов Альберт Рифович
Алгоритмы логического управления температурно-силовыми режимами процесса механообработки в условиях неопределенности

© Научная электронная библиотека «Веда», 2003-2013.
info@lib.ua-ru.net