Электронная библиотека Веда
Цели библиотеки
Скачать бесплатно
Доставка литературы
Доставка диссертаций
Размещение литературы
Контактные данные
Я ищу:
Библиотечный каталог российских и украинских диссертаций

Вы находитесь:
Диссертационные работы России
Технические науки
Автоматизированные системы управления и прогрессивные информационные технологии

Диссертационная работа:

Волкова Ольга Рудольфовна. Повышение эффективности испытаний автоматизированных систем на основе конструирования моделей случайных процессов с заданными статистическими характеристиками : Дис. ... канд. техн. наук : 05.13.06 : Москва, 2003 134 c. РГБ ОД, 61:04-5/1843

смотреть содержание
смотреть введение
Содержание к работе:

Введение 4

1. Конструирование математических моделей нелинейных технических
систем с использованием функциональных рядов 16

  1. Функциональные ряды Вольтерра (Винера) - аппарат идентификации и моделирования технических систем 16

  2. Определение динамических характеристик в виде ядер Винера..24

  3. Основные проблемы практического применения Винеровского подхода 27

Выводы 30

2. Математическое обеспечение для конструирования моделей
случайных процессов с заданными статистическими
характеристиками 31

  1. Конструирование моделей случайных процессов с заданными статистическими свойствами 31

  2. Коррекция элементов ПСП на основе градиентного метода 39

  3. Коррекция ПСП с помощью ортогональных многочленов 44

  4. Конструирование моделей случайных процессов с заданными многомерными автокорреляционными функциями 48

  5. Конструирование моделей случайных процессов с заданными статистическими характеристиками для идентификации многомерных систем 52

  6. Конструирование моделей случайных процессов с заданным частотным диапазоном 55

  7. Определение весовой функции обратной системы 61

  8. Преобразование ПСП в заданном частотном диапазоне без изменения спектральной плотности 63

Выводы 65

3. Экспериментальные исследования 66

  1. Конструирование моделей случайных процессов с заданными оценками центральных моментов 66

  2. Конструирование моделей случайных процессов с заданными оценками многомерных автокорреляционных функций 72

  3. Влияние статистических характеристик моделей случайных процессов на результаты идентификации одномерных и многомерных систем 81

  4. Конструирование моделей случайных процессов в заданном частотном диапазоне 88

  5. Конструирование моделей случайных процессов в заданном частотном диапазоне без изменения спектральной плотности ... 94

Выводы 99

4. Математическое моделирование системы автоматического
регулирования газотурбинного двигателя на основе Винеровского
подхода 100

  1. Требования к комплексу программно-технических средств, реализующему Винеровский подход 100

  2. Система автоматического регулирования газотурбинного двигателя. Предварительные исследования 108

  3. Система автоматического регулирования газотурбинного двигателя. Идентификация динамических характеристик 112

Выводы 118

Заключение 119

Литература 123

Справка об использовании результатов диссертационной работы Приложение

Введение к работе:

В условиях рыночной экономики создание и применение в промышленности сложных динамических систем, рост интенсивности их использования и повышение требований к их надежности усиливают значимость задачи их испытаний на этапах производства и опытной эксплуатации. Такие системы являются типичными в технологических машинах, функционирующих в различных режимах их эксплуатации. Одной из важнейших проблем является описание исследуемой системы соответствующей математической моделью (/3/,/5/,/58/,/63/), для успешного решения которой требуются априорные сведения. Возможность использования адекватной математической модели существенно повышает эффективность управления реальной динамической системой.

При проведении научных и производственных испытаний значительное место занимает проблема конструирования математических моделей сложных непрерывных динамических систем с целью изучения и описания особенностей и свойств, присущих этим системам. Получение таких моделей преследует такие важные цели как (/64/,/66/):

выявление причинно-следственных связей между внешними воздействиями окружающей среды и изменениями свойств исследуемой системы;

установление качественного и количественного соотношения между комплексом выявленных связей путем наблюдения серии подобных (однотипных) воздействий на систему, сопоставление полученных реакций с многочисленными систематически повторяющимися фактами;

выделение ряда возможных различий в поведении изучаемой системы, что позволяет осуществлять комплексное формирование и многоцелевое использование накопленной информации о функционировании системы в многочисленных задачах, относящихся к производственно-исследовательской тематике.

Особую актуальность для установления причинно-следственных зависимостей между входной и выходной информацией приобретает развитие методов идентификации (/47/,/48/,/31/), базирующихся на конструировании или оценивании структуры и параметров математической модели исследуемой системы по экспериментальным данным, полученным в ходе стендовых или эксплуатационных испытаний.

Общие проблемы конструирования математических моделей динамических систем рассмотрены в работах Цыпкина ЯЗ. (/82/,/83/), Красовского А.А. /75/, Эйкхоффа П. (/73/,/90/), Мелса Дж.Л. /69/, Гропа Д. /22/, В. Мармарелиса, П. Мармарелиса /42/, Музыкина С.Н. (/1/,/46/,/47/,/48/), Пупкова К.A. (/58/,/59/,/60/,/61/,/62/,/63/,/64/), Капалина В.И./33/идр.

Проблемы описания функционирования технических систем на основе экспериментальных данных, которые характерны для научных и производственных испытаний, наиболее полно рассмотрены в работах Райбмана Н.С. /66/, Дейча A.M. (/23/,/24/), Волгина Л.Н. (/11/,/12/), Щербакова М.А. (/84/,/85/,/86/,/87/,/88/,/89/).

В связи с широким использованием средств вычислительной техники как элемента автоматизированной системы управления технической системой, так и в качестве элемента регистрирующей аппаратуры, актуальными являются задачи совершенствования методов конструирования математических моделей по дискретным измерениям входных и выходных процессов. В то же время необходимо учитывать,

что при дискретизации непрерывных переменных могут иметь место нежелательные эффекты искажения и потери информации о характеристиках измеренных процессов, существенно затрудняющие идентификацию исследуемой системы.

При изучении динамики сложных производственных систем необходимо принимать во внимание, что характер их поведения подчиняется сложным нелинейным законам, а процессы, протекающие в них, очень часто могут быть отнесены к случайным. Очевидно, что классические приемы построения математических моделей таких систем оказываются трудно применимыми, поскольку размерности задачи, принципиально различающиеся свойства изучаемых процессов не позволяют в полной мере использовать аппарат дифференциальных уравнений для построения математических моделей надлежащей точности, тем более что априорная информация о структуре математической модели оказывается неполной или неточной, что, в свою очередь порождает дополнительные сложности с решением второй важной задачи изучения динамики системы - оценивания параметров в выбранной математической модели. Т.е. некорректное решение первой задачи - выбора структуры математической модели естественным образом предопределяет невозможность корректного решения всей задачи в целом. С другой стороны, процессы испытаний предполагают целенаправленный и соответствующим образом организованный сбор экспериментальных данных о функционировании исследуемой системы в различных режимах эксплуатации. Поэтому целесообразным оказывается эксплуатация такой математической модели системы, которая исключала бы решение ненужных промежуточных задач и позволяла бы применять ее для различных режимов работы исследуемой системы и для различных систем. При этом процесс построения математической модели должен производиться предпочтительно только

по экспериментальным данным и, что очень важно, структура модели должна быть универсальной для достаточно широкого класса технических систем.

Таким образом, при решении задачи эффективных испытаний сложных технических систем необходимо использовать математические модели, конструирование которых должно выполняться по экспериментальным данным на основе применения достаточно общих подходов.

В теории систем известен математический аппарат для решения задач построения математических моделей по экспериментальным данным 191, основанный на применении аппарата функциональных рядов Вольтерра (Винера), позволяющий при корректно организованных испытаниях и последующей обработке информации конструировать универсальные математические модели технических систем широкого назначения. Структура таких моделей предопределяется структурой функционального ряда, а решение задачи идентификации заключается в определении динамических характеристик, являющихся по своей сути «коэффициентами» разложения в ряд реакции технической системы на произвольное входное воздействие. Следует отметить при этом, что принципиально характеристики модели определяются для входных процессов, имеющих случайный характер, и процедура определения ориентирована на применение многомерного корреляционного анализа /47/.

При решении задач стендовых и эксплуатационных испытаний сложных динамических систем важное значение имеет повышение их эффективности, которое заключается, в частности, в сокращении времени и сроков самих испытаний, повышении достоверности результатов испытаний (имеется в виду не достоверность функционирования аппаратной составляющей испытательных стендов, ъг-

достоверность результатов идентификации динамических характеристик и достоверность эксплуатации математической модели)

Учитывая, что использование математического аппарата функциональных рядов Вольтерра (Винера) предполагает проведение высококачественной процедуры идентификации динамических характеристик, которая основывается на тестировании исследуемой системы специальными воздействиями случайного характера, повышенные требования предъявляются к свойствам применяемых тестирующих воздействий (особенности требований будут описаны ниже)/15/.

Исходя из выше изложенного, сформулируем цель и задачи работы. Цель работы:

Повышение эффективности испытаний автоматизированных

машиностроительных систем.

Для достижения поставленной цели сформулированы и решены следующие задачи, обеспечивающие проведение высокоточной процедуры идентификации динамических характеристик исследуемой системы и моделирование случайных процессов, протекающих в ней:

конструирование моделей случайных процессов с задаваемыми статистическими характеристиками в виде оценок центральных моментов;

конструирование моделей случайных процессов с задаваемыми статистическими характеристиками в виде оценок многомерных автокорреляционных функций;

конструирование низкочастотного и полосового фильтров, обеспечивающих постоянную спектральную плотность СП в заданном частотном диапазоне;

- конструирование фильтра, сохраняющего спектральную плотность входного случайного процесса в заданном частотном диапазоне.

Решение первой задачи обеспечивает высокоточную идентификацию безынерционных функциональных преобразователей; решение второй задачи — высокоточную идентификацию нелинейных систем с памятью; решение третьей задачи - высокоточную идентификацию динамических систем, функционирующих в определенном частотном диапазоне; решение четвертой задачи обеспечивает выделение компонент случайного процесса, соответствующих требуемому частотному диапазону.'

Отметим, что одновременно первые две задачи обеспечивают моделирование случайных процессов с заданными статистическими свойствами во временной области, а третья и четвертая — моделирование случайных процессов с заданными статистическими свойствами в частотной области.

Научная новизна заключается в

применении метода конструирования моделей случайных процессов с заданными статистическими характеристиками в виде оценок центральных моментов распределения и многомерных автокорреляционных функций на основе построения взаимно обратных систем для обеспечения эффективной процедуры идентификации и моделирования динамических процессов в автоматизированных системах методом Винера;

разработке метода конструирования фильтров, обеспечивающих постоянную спектральную плотность случайного процесса в заданном частотном диапазоне для обеспечения эффективной процедуры

1 Предполагается применение процедуры идентификации методом Винера, основанным на использовании случайного процесса типа «белый» гауссовский шум

идентификации динамических характеристик автоматизированных систем методом Винера;

разработке метода конструирования фильтра, сохраняющего спектральную плотность входного случайного процесса в заданном частотном диапазоне;

конструировании динамической системы, выполняющей преобразование случайного процесса в процесс с заданными статистическими свойствами во временной и частотной области.

Практическая ценность. Практическая ценность работы заключается в обеспечении эффективного использования автоматизированных систем на основе повышения достоверности их испытаний, сокращения сроков их проведения, в том числе применительно к системе автоматического регулирования газотурбинного двигателя большой мощности.

Методы исследования. В работе использован математический аппарат теории систем, функционального анализа, численных методов, методов оптимизации интегральных и дифференциальных уравнений.

Реализация работы. Результаты работы были использованы на научно-производственном предприятии «Электронно-гидравлическая автоматика» (НІШ «ЭГА») для обработки результатов испытаний системы автоматического регулирования газотурбинного двигателя с целью идентификации динамических характеристик исследуемого объекта, конструирования моделей случайных процессов с заданными статистическими характеристиками и выделения процессов с заданной спектральной плотностью в необходимом частотном диапазоне.

Апробация работы. Результаты работы докладывались на заседании кафедры «Информационных технологий и вычислительных

систем» МГТУ «Станкин», а также на научно-технических конференциях, в том числе:

5-я научная конференция МГТУ «Станкин» и Учебно-научного центра математического моделирования МГТУ «Станкин» - ИММ РАН (Москва, 2002);

V международный конгресс по математическому моделированию (Дубна, 2002)

6-я научная конференция МГТУ «Станкин» и Учебно-научного центра математического моделирования МГТУ «Станкин» - ИММ РАН (Москва, 2003);

III международная научно-практическая конференция «Моделирование. Теория, методы и средства» (Новочеркасск, 2003);

IV международная научно-практическая конференция «Теория, методы и средства измерений, контроля и диагностики» (Новочеркасск, 2003).

Публикации. По материалам диссертации опубликовано 8 работ.

В п.1 диссертационной работы рассмотрены теоретические основы конструирования математических моделей динамических систем. Показано, что в условиях отсутствия информации о структуре математической модели системы наиболее перспективным математическим аппаратом являются функциональные ряды Вольтерра (Винера).

Конструирование математической модели, реализующей внешнее математическое описание системы, состоит из двух этапов. На первом из них (этап идентификации) проводится процедура идентификации динамических характеристик в виде ядер функционалов Вольтерра (Винера), которая включает в себя организацию эксперимента с исследуемой системой, в ходе которого регистрируются входные

воздействия и реакции системы (пассивный эксперимент), или регистрируются реакции системы на тестирующие воздействия специального вида (активный эксперимент); на втором этапе (этап моделирования) производится собственно моделирование системы с помощью рассчитанного набора ядер функционалов.

Отмечено, что винеровская модель дает наилучшее приближение к реакции исследуемой системы в смысле минимума среднеквадратической ошибки, по сравнению с аналогичными моделями такого же класса.

Приводятся основные проблемы практического применения винеровского подхода к задачам идентификации и моделирования, среди них:

конструирование моделей тестирующих воздействий,

предназначенных для проведения высококачественной

процедуры идентификации (в том числе конструирование

статистически независимых реализаций тестирующих

процессов с наперед задаваемыми значениями моментных

(многомерных автокорреляционных) функций).

Отмечается, что применение классических соотношений метода

Винера оказывается возможным после решения проблемы о

конструировании тестирующих воздействий с статистическими

характеристиками (многомерными автокорреляционными функциями),

отличающимися от характеристик «белого» гауссовского шума на

допустимую и очень малую величину.

Показана необходимость комплексного решения проблем Винеровского подхода.

В п.2 предложено решение задач, необходимых для достижения поставленной в работе цели.

Для решения задачи конструирования математических моделей случайных процессов с заданными оценками центральных моментов распределения использован метод активной коррекции реализации случайного процесса с применением ортогональных многочленов. Рассмотрены возможные варианты решения задачи, приводится расчет оптимального шага коррекции.

Для решения задачи конструирования моделей случайных процессов с заданными статистическими характеристиками в виде многомерных автокорреляционных функций использован метод взаимно обратных систем, который существенно повышает эффективность описанной в литературе схемы коррекции реализаций случайных процессов. Рассмотрен подход к конструированию статистически независимых моделей случайных процессов с заданными оценками автокорреляционных функций.

Для решения задачи конструирования моделей случайного процесса с постоянной спектральной плотностью в заданном частотном диапазоне использовано решение задачи конструирования моделей случайных процессов с заданными автокорреляционными функциями. Определена автокорреляционная функция процесса, имеющего постоянную спектральную плотность в заданном частотном диапазоне. Показан рекурсивный характер процедуры коррекции.

Для решения задачи конструирования моделей случайного процесса с сохранением спектральной плотности исходного процесса в заданном частотном диапазоне также использовано решение задачи конструирования моделей случайных процессов с заданными автокорреляционными функциями. Определена автокорреляционная функция процесса, имеющего заданную спектральную плотность в требуемом частотном диапазоне. Показан рекурсивный характер процедуры коррекции.

Для исключения рекурсивного характера коррекции выполнено конструирование динамической системы, выполняющей преобразование процесса в процесс с заданными статистическими характеристиками. Показано, что ядро функционала, выполняющего преобразование, удовлетворяет нелинейному интегральному уравнению.

В п.З рассмотрены экспериментальные исследования, позволяющие оценить правомочность применения разработанных во второй главе методов на примерах эталонных моделей.

Приводится пример конструирования модели случайного процесса, имеющего распределение, близкое к гауссовскому, с заданными оценками центральных моментов распределения до 8-го порядка включительно. Показаны закономерности коррекции. Отмечено, что производимая коррекция реализации случайного процесса не изменяет оценки плотности и функции распределения.

Приводится пример конструирования модели случайного процесса, имеющего распределение, близкое к гауссовскому, с заданными автокорреляционными функциями до 4-го порядка включительно. Выполнено сравнение эффективности предлагаемого метода с известными методами.

Приводится пример конструирования модели случайного процесса, имеющего постоянную спектральную плотность в заданном частотном диапазоне. Показано влияние точности задания оценки требуемой автокорреляционной функции на точность решения задачи.

Приводится пример конструирования модели случайного процесса, с заданной спектральной плотностью в требуемом частотном диапазоне. Показано влияние точности задания оценки требуемой автокорреляционной функции на точность решения задачи.

Для эталонных систем выполнены исследования, связанные с влиянием точности конструирования моделей случайных процессов с заданными статистическими свойствами на результаты идентификации их динамических характеристик. Подтверждена необходимость использования моделей случайных процессов с заданными статистическими свойствами и эффективность предлагаемых методов для конструирования моделей с такими свойствами.

В п.4 приводятся требования к программно-техническому комплексу, реализующему метод Винера. Рассмотрены результаты применения предлагаемых в работе методов к исследованию системы автоматического регулирования газотурбинного двигателя. По результатам предварительного эксперимента определены оценки полосы пропускания системы, глубины памяти системы и порядка нелинейности. Эти оценки обеспечили обоснованный выбор частотного диапазона тестирующего процесса, определение числа подсчитываемых в ядрах точек, интервала наблюдения и интервала дискретности по времени. Для всех регистрируемых испытательным стендом параметров системы автоматического регулирования и газотурбинного двигателя определены динамические характеристики в виде ядер Винера для двух случаев - до коррекции реализации случайного процесса и после коррекции, обеспечившей требуемые статистические свойства. Выполнено моделирование реакций при изменении подачи топлива, определены погрешности моделирования, показано, что учет нелинейных свойств системы существенно повышает достоверность моделирования реакций исследуемой системы.

В заключении приводятся основные выводы и результаты работы.

В приложении приводится структура программного обеспечения метода Винера.

Подобные работы
Ризванов Константин Анварович
Информационная система поддержки процессов испытаний ГТД на основе организационно-функциональной модели
Ивахненко Андрей Михайлович
Научные основы комплексной автоматизации и моделирования характеристик технологических процессов в системе контроля качества продукции промышленного производства
Рябуха Владимир Иванович
Автоматизация процессов параметрического синтеза и оценки функциональных характеристик электрических машин
Илюхин Андрей Владимирович
Автоматизация технологического процесса приготовления компонентов радиопоглощающего бетона с оптимизацией по электрофизическим характеристикам электропроводной фазы
Андрианов Алексей Игоревич
Автоматизация процесса приготовления смеси компонентов электропроводного бетона с оптимизацией по электрофизическим характеристикам
Мякишев Владислав Витальевич
Повышение точностных характеристик контурных систем управления машиностроительного производства
Рожков Владимир Николаевич
Методы повышения эффективности управления технологическими процессами районных тепловых станций
Ермолаев Вячеслав Иванович
Повышение эффективности управления на автоматизированных профилегибочных машинах за счет уточнения математической модели процесса формообразования и оперативной коррекции управляющих программ
Суханова Наталия Вячеславовна
Совершенствование и повышение эффективности микропроцессорных систем управления оборудованием на основе методов оценки и контроля надежности
Рохин Олег Викторович
Повышение эффективности фрезерования крупногабаритных фасонных деталей на основе автоматизированного управления режимами резания

© Научная электронная библиотека «Веда», 2003-2013.
info@lib.ua-ru.net