Электронная библиотека Веда
Цели библиотеки
Скачать бесплатно
Доставка литературы
Доставка диссертаций
Размещение литературы
Контактные данные
Я ищу:
Библиотечный каталог российских и украинских диссертаций

Вы находитесь:
Диссертационные работы России
Технические науки
Горные машины

Диссертационная работа:

Мирный Сергей Георгиевич. Обоснование и выбор рациональной частоты вращения штанги машин для сверления шпуров в породах повышенной крепости и абразивности : Дис. ... канд. техн. наук : 05.05.06 : Новочеркасск, 2005 146 c. РГБ ОД, 61:05-5/3296

смотреть содержание
смотреть введение
Содержание к работе:

Стр.
ВВЕДЕНИЕ 4

Глава 1. Состояние вопроса и задачи исследований 10

  1. Сущность и основные особенности вращательного бурения шпуров 10

  2. Резцы для вращательного бурения шпуров 13

  3. Модели взаимодействия режущих инструментов с разрушаемым массивом 18

  4. Влияние частоты вращения буровой штанги на силовые и энергетические параметры процесса бурения 29

  5. Способы и технические решения по поддержанию рациональных режимных параметров бурения 33

Выводы по главе 1 и задачи исследований .39

Глава 2. Методика и техника исследований 42

  1. Основные положения методики исследований 42

  2. Выбор и характеристика горных пород для исследований . 44

  3. Экспериментальные стенды, измерительная аппаратура . . .45

Выводы по главе 2 51

Глава 3. Экспериментальные исследования влияния частоты вращения
на процесс разрушения породы, скорость и силовые параметры
при бурении шпуров 53

  1. Исследование процесса сколообразования породы буровым резцом 53

  2. Исследование влияния частоты вращения резца на процесс тре-щинообразования под торцевой площадкой 61

  3. Исследование влияния частоты вращения на скорость и силовые параметры бурения шпуров 66

Выводы по главе 3 82

Глава 4. Математическое моделирование процесса вращательного бурения
шпуров 85

4.1. Разработка математической модели функционирования бурильной

машины вращательного действия 85

4.2. Исследования на математической модели влияния частоты враще
ния штанги на скорость, энергоемкость бурения и стойкость резцов
по породам с различными прочностными характеристиками.... 95

Выводы по главе 4 100

Глава 5. Разработка способа управления режимными параметрами при
вращательном бурении шпуров .101

  1. Разработка способа и алгоритма управления частотой вращения буровой штанги при вращательном бурении шпуров 101

  2. Разработка технических решений реализующих способ и алгоритм управления частотой вращения буровой штанги при вращательном бурении шпуров 105

  3. Оценка эффективности управления частотой вращения буровой штанги 107

Выводы по главе 5 112

ЗАКЛЮЧЕНИЕ 113

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 115

ПРИЛОЖЕНИЯ 124

Введение к работе:

В мире около 40 % подготовительных и вскрывающих выработок при подземном способе добычи полезных ископаемых приходится на долю буровзрывного способа (БВС). Кроме этого, бурение шпуров осуществляется под анкерную крепь при комбайновой проходке, а при строительстве тоннелей и других подземных коммуникаций - для укрепления сводов и прилегающих к нему пластов горных пород.

Экономическое благополучие России определяется состоянием топливно-энергетического комплекса страны. Для обеспечения надежного энергоснабжения доля угля в производстве топливно-энергетических ресурсов должна возрасти с 12,2 до 17% (к 2020 году), а объем добычи составить 430-435 млн. т. в год.[1]. Подземный способ добычи угля занимает около 36% от общей добычи угля в стране. [2]. В угольной промышленности России более 50% объема подготовительных и вскрывающих выработок, проводимых с помощью БВС, приходится на Восточный Донбасс, на шахтах которого менее 10% выработок проводятся комбайновым способом.

Одной из основных задач деятельности любого горного предприятия, в том числе и угольной шахты, является воспроизводство фронта очистных работ, а именно проведение горных подготовительных и вскрывающих выработок, открывающих доступ к полезному ископаемому. Существующий уровень отечественной техники для горнопроходческих работ намного ниже аналогичного зарубежного. Выпускаемое оборудование морально устарело [2]. В соответствии с этим производительность труда в горнорудной промышленности России ниже, чем в США в 5 - 7 раз, а в угольной до 20 раз [3].

Для оценки эффективности работы горнодобывающей промышленности был введен показатель удельного объема проведения подготовительных выработок (Су), и в официальной статистике он приводится в погонных метрах на 1000 тонн добычи полезного ископаемого [4].

5 Несмотря на возрастающие объемы добычи угля, показатель удельного объема проведения выработок в последние годы имеет тенденцию к снижению. Тем не менее, буропогрузочные работы являются основными при проведении подготовительных выработок и занимают от 60 до 75% времени проходческого цикла. На один метр длины выработки среднего сечения приходится до 40 метров шпуров, на бурение которых тратится до 2-х часов времени.

Крепость пород в подготовительных забоях шахт Восточного Донбасса такова, что в более чем половине из них применяется вращательный способ бурения (сверления) шпуров, областью применения которого являются породы с коэффициентом крепости от 4 до 10 единиц по шкале профессора М.М.Протодьяконова и абразивностью до 25мг. Однако применение сверления шпуров по породам повышенной крепости (8 ...10 единиц) и абразивности (15...25мг.) сталкивается с проблемой сохранения скоростных качеств резца и значительным уменьшением его стойкости. Большинство современных конструкций бурильных машин для сверления шпуров имеют ступенчатое регулирования частоты вращения буровой штанги, что не позволяет в полной мере решить задачу выбора рациональных режимных параметров, особенно по породам повышенной крепости и абразивности.

Программа механизации производственных процессов в угольной промышленности предусматривает применение более производительных горных машин и оборудования [5].

Поэтому совершенствование техники сверления шпуров по-прежнему остается актуальной задачей, решение которой возможно на строгой научной основе. Выбор рациональных режимных параметров (частота вращения штанги п^, осевое усилие Ру, количество промывочной жидкости Q) применительно к конкретным условиям и поддержание их в процессе бурения позволит повысить эффективность эксплуатации инструмента и бурильных машин. В настоящее время достижения в области управляемого привода и микропроцессорной техники позволяют на качественно новом уровне подойти к решению данной задачи и создавать гор-

ное оборудование нового технологического уровня, которое повысит производительность труда в горнодобывающей промышленности страны.

Исходя из этого целью работы является повышение эффективности процесса бурения шпуров бурильными машинами вращательного действия в породах повышенной крепости и абразивности на основе обоснования и выбора рациональной частоты вращения штанги.

Основная идея работы заключается в увеличении скорости бурения и стойкости резцов, которое будет достигаться выбором и периодическим изменением в процессе бурения частоты вращения буровой штанги в зависимости от крепости буримых пород и степени затупления инструмента.

Научные положения, разработанные лично соискателем:

при вращательном бурении (сверлении шпуров) удельное количество сколов породы зависит не только от глубины срезаемой стружки, но и от разницы между внешним и внутренним радиусами резца, что приводит к повышению затрат энергии на разрушение; развитие трещин под торцовой площадкой резца, приводящих к ослаблению породного массива, зависит от времени её воздействия на подрезцовую зону, обратно пропорционального частоте вращения буровой штанги. Эти факторы заметно увеличивают влияние частоты вращения резца на величину усилия подачи и крутящего момента;

с увеличением частоты вращения штанги возрастают величины усилия подачи и крутящего момента на резце, независимо от конструктивных параметров режущей части инструмента и крепости породы;

достижение максимальных значений механической скорости бурения и стойкости резца возможно за счет настройки начального значения частоты его вращения на максимум по крепости породы и последующей корректировки её величины в зависимости от затупления инструмента и возможных изменений крепости породы.

7 Новизна научных положений состоит в следующем:

уточнен механизм сколообразования породы перед передней гранью бурового резца в зависимости от толщины стружки и радиусов кривизны траекторий движения внешних и внутренних точек режущих кромок инструмента, позволяющий объяснить причины влияния частоты вращения на рост затрат энергии на разрушение; удельное количество сколов при бурении шпуров 042...43мм увеличивается в 3,0...3,3 раза по отношению к резанию при линейной траектории движения резца с адекватными значениями ширины и толщины стружки;

впервые установлено, что пропорционально увеличению частоты вращения резца, уменьшается величина слоя породы нарушенного трещинами под торцовой площадкой резца, что приводит к росту удельных затрат энергии на разрушение;

установлены взаимосвязи силовых параметров с частотой вращения резца, характеризующиеся линейным увеличением значений осевого усилия и крутящего момента на резце с ростом частоты вращения. Данное явление имеет место при разных типах и крепости пород, а также разных конструкциях режущей части бурового инструмента;

уточнены зависимости для расчета средних значений усилия подачи и крутящего момента при вращательном бурении шпуров, отличающиеся от известных учётом влияния частоты вращения резца, что позволяет повысить точность расчетов в среднем на 30...35% и применять их с учетом установленных закономерностей сколообразования породы для математического моделирования функционирования бурильных машин;

разработан способ и алгоритм управления частотой вращения буровой штанги при вращательном бурении, а также реализующие их технические решения, обеспечивающие повышение скорости бурения и стойкости инструмента, отличающиеся тем, что частота вращения в процессе бурения периодически настраивается на рациональное значение.

8 Значение работы.

Научное значение работы состоит в совершенствовании теории функционирования бурильных машин вращательного действия и установлении конкретных закономерностей процесса вращательного бурения.

Практическое значение работы заключается в разработке способа управления частотой вращения штанги бурильных машин вращательного действия и технических решений, реализующих данный способ.

Методы исследования. Для решения поставленных задач в работе использован комплексный метод, включающий обобщение и анализ проведенных исследований, экспериментальные методы исследований. Для исследования процесса трещинообразования применен метод люминесцентной дефектоскопии, для исследования процесса сколообразования и влияния частоты вращения резца на скорость и силовые параметры вращательного бурения шпуров применен метод тензометрирования. Полученные результаты были обобщены и применены в математическом моделировании на современных ПЭВМ.

Обоснованность и достоверность научных положений и выводов подтверждается использованием теоретически обоснованных и проверенных методов исследования, периодической поверкой приборов и аппаратуры соответствующими службами, соблюдением необходимого порядка проведения экспериментов и применением статистических методов их обработки, сходимостью расчетных данных с результатами опытов, применением современных ПЭВМ для выполнения расчетов и обработки полученных результатов, оценкой адекватности разработанной математической модели, а также достаточной представительностью объема экспериментов, позволяющим с вероятностью 0,95 утверждать, что ошибки результатов не превышают 15-20%.

Основные положения диссертационной работы доложены и одобрены на научно-технических конференциях: (1985-89, 1998-2004г.г.) ЮРГТУ (НПИ); на научном семинаре «Новое в теории, технологии и технике бурения» 21-23 ноября 1991г. ННЦ-ИГД им. А.А.Скочинского (г. Люберцы Мое-

9 ковской Обл.); на международном симпозиуме «Неделя горняка -2004», Московский государственный горный университет, (г. Москва); на 7-й международной научно-технической конференции «Новые технологии управления движением технических объектов» 15-17 декабря 2004г. ЮРГТУ (НПИ), (г. Новочеркасск).

Основные положения диссертации отражены в 10-ти печатных работах, ссылки на которые даны по тексту работы.

Структурно работа состоит из введения, пяти глав, заключения, списка использованных источников из 95 наименований и 5 приложений; изложена на 142 страницах машинописного текста, содержит 53 рисунка и 14 таблиц.

Автор выражает глубокую благодарность д-ру техн. наук, проф. Н.И. Сысоеву и возглавляемому им коллективу кафедры «Нефтегазопромысловые и горные машины и оборудование» ЮРГТУ (НПИ) за оказанную поддержку и методические советы на различных этапах исследований и оформления работы.

Подобные работы
Приходько Татьяна Васильевна
Обоснование рациональных режимов вращательно-силового бурения пород средней крепости и крепких, обеспечивающих повышение износостойкости породоразрушающего инструмента
Бродский Григорий Семенович
Обоснование, выбор параметров и разработка систем фильтрации рабочих жидкостей для гидрофицированных горных машин
Степанов Борис Львович
Обоснование и выбор параметров дугового грохота для разделения гранитного сырья
Козлов Валерий Владимирович
Обоснование и выбор параметров выемочно-доставочной подсистемы агрегата для тонких пластов, обеспечивающих эффективную погрузку угля
Секретов Михаил Валентинович
Обоснование и выбор рациональных параметров штрипсовых станков
Титов Сергей Владимирович
Обоснование и выбор критериев оценки параметров угледобывающих комплексов с целью повышения эффективности их применения
Дмитриев Владимир Трофимович
Обоснование и выбор энергосберегающих параметров функционирования шахтных компрессорных установок
Матвеева Людмила Ивановна
Выбор и обоснование конструктивных параметров малогабаритных погружных пневмоударников
Нехорошев Дмитрий Борисович
Обоснование и выбор рациональных параметров технологического процесса шарошечного бурения в условиях карьера
Сайдаминов Исохон Абдулфайзович
Обоснование и выбор параметров средств температурной адаптации гидрообъемных трансмиссий карьерного оборудования

© Научная электронная библиотека «Веда», 2003-2013.
info@lib.ua-ru.net