Электронная библиотека Веда
Цели библиотеки
Скачать бесплатно
Доставка литературы
Доставка диссертаций
Размещение литературы
Контактные данные
Я ищу:
Библиотечный каталог российских и украинских диссертаций

Вы находитесь:
Диссертационные работы России
Технические науки
Проектирование и конструкция судов

Диссертационная работа:

Хо Куанг Туан. Прогнозирование ударных волновых нагрузок на конструкции корпуса судна : Дис. ... канд. техн. наук : 05.08.03 : СПб., 2004 153 c. РГБ ОД, 61:05-5/832

смотреть содержание
смотреть введение
смотреть литературу
Содержание к работе:

ПРЕДИСЛОВИНИЕ 04

ВВЕДЕНИЕ 09

ГЛАВА 1. ОСОБЕННОСТИ, ИМЕЮЩИЕСЯ ПОДХОДЫ И МЕТОДИКИ УЧЕТА НАГРУЗОК, ОБУСЛОВЛЕННЫХ СЛЕМИНГОМ СУДНА, В ЗАДАЧЕ ПРОЕКТИРОВАНИЯ КОНСТРУКЦИЙ КОРПУСА СУДНА. ПОСТАНОВКА ЗАДАЧИ ИССЛЕДОВАНИЯ 17

1.1. Общие положения 17

1.2. Обзор исследований по оценке дополнительных максимальных изгибающих моментов и гидродинамических давлений при слеминге судов на регулярном и нерегулярном волнении 20

1.3. Постановка задачи исследования 42

ГЛАВА 2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЗАДАЧИ ОПРЕДЕЛЕНИЯ ДОПОЛНИТЕЛЬНЫХ ДИНАМИЧЕСКИХ ДАВЛЕНИЙ И ПОГОННЫХ НАГРУЗОК НА КОРПУС, ОБУСЛОВЛЕННЫХ ДНИЩЕВЫМ И БОРТОВЫМ СЛЕМИНГОМ СУДНА, НА РЕГУЛЯРНОМ ВОЛНЕНИИ 52

2.1. Общие положения 52

2.2. Краевая гидродинамическая задача об определении сил, действующих на жесткое двумерное тело, погружающееся в покоящуюся жидкость 55

2.3. Определение гидродинамической силы сопротивления погружению непрямостенных сечений корпуса судна в жидкость на основе уравнения Лагранжа 66

2.4 Уравнения продольной качки судна 73

2.5 Определение кинематических параметров сечений корпуса при качке 78

ГЛАВА 3. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАСЧЕТНОГО ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКИХ ИЗГИБАЮЩИХ МОМЕНТОВ ПРИ СЛЕМИНГЕ И УЧЕТА ИХ ВЛИЯНИЯ НА ОБЩУЮ ПРОЧНОСТЬ КОРПУСА СУДНА 82

3.1. Общий характер динамических перемещений корпуса, обусловленных слемингом на волнении 82

3.2. Динамические перемещения и ускорения корпуса судна, вызываемые слемингом 83

3.3. Динамические изгибающие моменты в сечениях корпуса судна на регулярном волнении, обусловленные воздействием нагрузки при слеминге 89

3.4. Определение стандартов Динамических изгибающих и суммарных изгибающих моментов на нерегулярном волнении 91

ГЛАВА 4. ОПИСАНИЕ ПРОГРАММНОГО КОМПЛЕКСА И РЕЗУЛЬТАТЫ ТЕСТОВЫХ РАСЧЕТОВ 96

4.1. Алгоритм математической модели задачи определения ударных волновых нагрузок на корпус судна 96

4.2. Описание программного комплекса, реализующего расчет 99

4.3. Результаты типового расчета качки и волновых нагрузок в линейной постановке 105

4.4. Результаты расчета пространственно-временного распределения погонных нагрузок при слеминге на регулярном волнении 118

4.5. Динамические и суммарные изгибающие моменты на регулярном волнении 123

4.6. Динамические и суммарные изгибающие моменты на нерегулярном волнении. Стандарты изгибающих моментов 143

ЗАКЛЮЧЕНИЕ 147

СПИСОК ЛИТЕРАТУРЫ 148 

Введение к работе:

При проектировании судовых конструкций, решении вопросов мореходности, обеспечения общей и местной прочности корпуса в режиме движения на волнении возникает проблема учета динамических (ударных) воздействий, обусловленных такими явлениями, как днищевой и бортовой слеминг. Для оценки внешних сил с учетом слеминга в настоящее время в научных исследованиях и практических методиках используют два подхода.

Первый подход основан на раздельном рассмотрении проблемы определения параметров качки судна и волновой низкочастотной нагрузки на основе линейной теории и дальнейшей оценке нелинейных нагрузок по известным из линейной задачи кинематическим параметрам движения судна на волнении. Таким образом, суммарную нагрузку, действующую на корпус судна, условно разделяют на две составляющие - волновую, линейно связанную с высотой волны и качкой судна, обуславливающую относительно медленный изгиб корпуса на волнении и дополнительную динамическую (ударную) нагрузку, нелинейно зависящую от высоты волны и перемещений корпуса, вызывающую дополнительные динамические -линейные, угловые и вибрационные перемещения корпуса судна.

В итоге общая задача определения внешних сил, действующих на корпус судна на волнении, разделяется на две:

1) задачу вычисления волновых давлений и, так называемых, квазистатических изгибающих моментов на основе теории линейной продольной качки;

2) задачу нахождения дополнительных ударных (динамических) давлений и изгибающих моментов, вызванных днищевым или бортовым слемингом.

Второй подход предполагает решение задачи о поведении корпуса на нерегулярном волнении с учетом слеминга и заливаемости на базе имитационной модели.

В данной работе принят первый подход, как общепринятый до настоящего времени в научных исследованиях, практических методиках и нормативных документах, хотя указанное выше разделение явлений следует признать условным. Основные исследования связаны с решением второй задачи. Для решения первой задачи используется готовое программное обеспечение.

Факторами, способствующими появлению днищевого слеминга, являются высокая балльность волнения, относительно малая осадка судна, наличие плоского участка днища в носовой оконечности, большие амплитуды вертикальной и килевой качки, связанные с явлением резонанса, и обуславливающие возможность оголения корпуса судна, высокие значения скоростей перемещений корпуса судна относительно частиц жидкости. Обычно транспортные суда подвержены днищевому слемингу только в балластном плавании. По имеющимся данным, днищевой слеминг проявляется наиболее сильно у судов, имеющих U-образные обводы в носовой оконечности.

Нелинейные нагрузки, связанные с непрямостенностью борта корпуса в оконечностях, действуют при каждом значительном (соизмеримом с осадкой или высотой надводного борта) изменении положения действующей ватерлинии в оконечности, когда ватерлиния пересекает резко непрямостенные участки борта, т.е. (при интенсивном волнении) практически в каждом цикле продольной качки.

Нелинейные нагрузки характеризуются большими величинами и кратковременностью действия. Продолжительность действия динамических нелинейных нагрузок различна при днищевом и бортовом слеминге. При оголении днища и последующем ударе время нарастания нагрузки составляет 0,1-0,2 с, а при бортовом слеминге 0,7-1,0 с. [71].

Характерной особенностью бортового слеминга является то, что его появление не связано с предварительным выходом из воды носовой оконечности. Сила удара тоже не зависит от того, было ли оголение.

Дополнительные динамические нагрузки, возникающие при слеминге, вызывают сложную реакцию корпуса судна. Это - общий эффект, выражающийся, с одной стороны, в изменении качки судна, то есть его перемещений как твердого тела, и, с другой стороны, в появлении упругих изгибных колебаний корпуса с частотой, имеющей порядок частоты первого тона.

Напряжения в корпусе судна, вызванные дополнительными динамическими воздействиями, возникают одновременно с напряжениями, вызванными линейными волновыми нагрузками, нагрузками на тихой воде и суммируются с ними. Это приводит к увеличению общей напряженности корпуса.

Известно, что бортовой слеминг приводит к появлению значительных прогибающих динамических моментов и может быть причиной серьезных повреждений корпуса, связанных с потерей устойчивости палубных конструкций.

В практике мореплавания известны случаи перелома корпусов судов, оказавшихся в штормовом море при неблагоприятных условиях загрузки, в результате тяжелых ударов о волны.

Кроме того, появление при слеминге дополнительных вибрационных напряжений значительной амплитуды может привести к более раннему возникновению и развитию усталостных трещин.

Наряду с общим изгибом корпуса под действием дополнительных динамических давлений возникают местные деформации обшивки и набора. Этими давлениями определяется дополнительное местное напряженное состояние конструкций.

При проектировании конструкций по требованиям к общей прочности с учетом влияния слеминга необходимо иметь рекомендации для определения величины расчетного динамического изгибающего момента в общем случае в любом сечении по длине корпуса судна.

При проектировании конструкций по требованиям к местной прочности необходимо знать величину максимальных динамических давлений на обшивку и набор, и их распределение по длине корпуса в носовом районе.

Результаты, полученные в диссертации, могут быть использованы для разработки (уточнения) таких рекомендаций.

Наряду с проблемой учета влияния слеминга при проектировании конструкций по требованиям к общей и местной прочности не менее важным является вопрос о предотвращении массовых эксплуатационных повреждений конструкций корпуса в носовом районе. Анализ информации о повреждениях показывает, что гофрировка и бухтины наружной обшивки, остаточные деформации набора в носовой оконечности судна являются распространенными видами повреждений корпуса, появляющимися вследствие сильного слеминга. Правильный выбор условий загрузки судна и режимов движения судна на интенсивном волнении позволяет уменьшить дополнительные нагрузки на корпус судна и в итоге исключить чрезмерные затраты на ремонтные работы.

Необходимость уточнения величин расчетных волновых нагрузок, учета нелинейных нагрузок диктуется потребностями проектирования корпуса судна на современном этапе, для которого характерны тенденции к усложнению расчетов, к повышению точности оценки напряженного состояния корпуса, оптимизации коэффициентов запаса прочности. Для обеспечения этого необходимы соответствующие методики расчета.

Современные критерии предельной и усталостной прочности, заложенные в основу нормативных требований для проектирования / расчетов прочности конструкций корпуса судна, базируются на вероятностных закономерностях действующих волновых нагрузок.

Линейная задача о качке и волновых нагрузках на реальном нерегулярном волнении решается на базе спектральной теории, используя амплитудно-частотные характеристики реакций корпуса и спектр волнения. В настоящее время эта задача исследована достаточно подробно.

Дополнительная нагрузка, возникающая при погружении днища корпуса после его оголения и (или) развала борта в волну, нелинейно зависит от высоты волны, поэтому оценка статистических характеристик, вызванных ею дополнительных изгибающих моментов для нерегулярного волнения, представляет значительные сложности. Указанные явления для условий нерегулярного волнения изучены недостаточно.

Статистические характеристики нелинейных нагрузок, в частности изгибающих моментов, не могут быть непосредственно определены с помощью математического аппарата спектральной теории, так как она разработана для линейных процессов.

Достаточно обоснованный способ их определения для условий нерегулярного волнения до настоящего времени в практике проектирования отсутствует. Также не имеет завершенного решения задача суммирования нелинейных и линейных нагрузок на нерегулярном волнении.

Иногда заменяют реальное нерегулярное волнение некоторым регулярным, параметры которого позволяют определить заведомо завышенные ударные нагрузки. Одним из вариантов оценки расчетных нагрузок при слеминге является их определение для условного «наиболее тяжелого режима» в виде пакета регулярных волн определенной длины с высотой, назначенной как нормативная доля длины волны. Однако количественно оценить влияние ударных нагрузок на предельную прочность и усталостную долговечность конструкций судового корпуса с помощью условных методов затруднительно. Для осуществления достоверного анализа надо знать статистические характеристики динамических нагрузок, рассматриваемых как случайный процесс.

Для количественной оценки влияния слеминга в рамках спектральной теории необходимо уметь определять изменение спектральной плотности давлений, изгибающих моментов, зачет нелинейных нагрузок. При этом надо решить проблему, относящуюся к распространению спектральной теории на нелинейные процессы.

Отсутствие надежных данных по величинам вероятностных характеристик изгибающих моментов, обусловленных нелинейными эффектами, сдерживает решение проблемы оценки предельной прочности и усталостной долговечности корпусов судов с учетом слеминга, и делает практически важными и актуальными дальнейшие исследования по этой проблеме.

Возможный способ решения перечисленных задач состоит в отказе от традиционного условного разделения нагрузок на линейно зависящие от высоты волны и нелинейно зависящие от этого параметра. При таком подходе рассмотрение процесса поведения судна на нерегулярном волнении должно выполняться непосредственно во временной, а не в частотной области, т.е. с построением имитационной модели поведения корабля на заданном нерегулярном волнении. Такая постановка рассмотрена в работах [42], [79], [81] и в настоящее время соответствующие исследования развиваются на кафедре конструкции судов СПб. ГМТУ [32].

Имитационная модель позволяет рассмотреть всю последовательность перемещений корпуса: всплытие с возможным выходом из воды части сечений, последующее погружение, заливание палубы водой. Применение такого подхода дает возможность получать реакции корпуса судна в виде реализаций случайных процессов, длина которых должна быть достаточна, чтобы построить законы распределения волновых изгибающих моментов с учетом нелинейных эффектов. Полученные временные реализации анализируемых процессов (кинематические параметры движения корабля, суммарные нагрузки и т.п.) дают возможность определить статистические характеристики, необходимые для оценки предельной прочности и усталостной долговечности. Однако в качестве практической методики такой подход пока рекомендован быть не может.

Из сказанного выше ясно, что слеминг вызывает опасную дополнительную нагрузку, которая приводит к повышению нагруженности и напряженности конструкций корпуса. Этот факт нашел отражение в Правилах классификационных обществ [70], а также в Нормах прочности [54].

Правила классификационных обществ содержат комплекс требований к конструкциям носовой оконечности, которые разработаны на основе результатов систематического анализа, опыта эксплуатации морских судов. В Правила включены указания общего характера о подкреплении носовой оконечности.

Правила Российского морского Регистра судоходства содержат рекомендации по учету влияния слеминга как на общую, так и на местную прочность корпуса. В частности, даны зависимости для определения расчетного изгибающего момента при ударе волн в развал бортов, вызывающего прогиб корпуса. В Правилах также приведены формулы для определения экстремального значения расчетного гидродинамического давления при ударах волн в днище носовой оконечности и при ударах волн в развал борта носовой оконечности.

Величина дополнительного (ударного) момента входит в качестве слагаемого в зависимость для определения расчетного суммарного изгибающего момента.

В Правилах нормирован параметр, в зависимости от величины которого следует или не следует учитывать дополнительные нагрузки при слеминге. Изгибающий момент при ударе волн в днище (при днищевом слеминге) в Правилах Российского морского Регистра не регламентируется.

Несмотря на значительное число исследований, выполненных к настоящему времени, в которых рассмотрены различные аспекты проблемы слеминга, еще не завершена работа по созданию надежного метода для учета влияния нагрузок при слеминге, необходимого для обеспечения потребностей практического проектирования конструкций корпуса судна. Основная цель диссертации - создание алгоритма такого метода, основанного на математической модели, описывающей и объединяющей все стадии процесса слеминга.

Работа является составной частью большого комплекса исследований, выполняемых на кафедре Конструкции судов СПб ГМТУ, связанных с созданием системы автоматизированного параметрического проектирования конструкций корпуса судна.

Для достижения поставленной цели выполнен ряд частных исследований. Центральное место здесь занимает решение задачи о распространении спектрального подхода для оценки нагрузок на нерегулярном волнении на нелинейную задачу.

Проблема исследования явления слеминга включает в себя рассмотрение 3-х входящих в нее подпроблем: расчета качки судна на волнении, определения дополнительных внешних гидродинамических нагрузок в сечениях корпуса судна, определения реакций конструкций корпуса на эти нагрузки.

В данной работе не ставилась задача разработки новых или качественного уточнения имеющихся решений для всех трех подпроблем.

В работе выбрана обоснованная, надежная, удобная для программирования и пригодная для практического применения при проектировании корпусных конструкций математическая модель учета влияния нагрузок от слеминга при проектировании.

Сформулирован метод, позволяющий последовательно решить необходимые задачи. Метод основан на применении спектральной теории при рассмотрении нерегулярного волнения. Для чего использован разработан ный на кафедре конструкции судов СПб. ГМТУ с участием автора оригинальный приближенный подход для получения спектральной плотности и стандартов нагрузок с учетом слеминга. Метод базируется на непосредственной линеаризации нелинейных по высоте волны амплитудных характеристик изгибающих моментов, определенных для регулярного волнения.

В связи с этим сначала решается поставленная задача для условий регулярного волнения, затем осуществляется переход к нерегулярному волнению с использованием спектрального преобразования. Реализация метода обеспечивается созданным по зависимостям математической модели соответствующим программным обеспечением.

Разработанный аппарат предназначен для углубленного расчетного анализа динамических нагрузок, действующих на корпус судна с заданными характеристиками формы и распределением весовой нагрузки при днищевом и бортовом слеминге. Предусмотрена оценка влияния слеминга на величины максимальных расчетных нагрузок - изгибающих моментов и давлений на нерегулярном волнении.

Предлагаемая математическая модель реализована в виде программного комплекса, с помощью которого выполняется расчет в замкнутом виде от автоматизированного задания исходных данных по судну и условиям его движения до получения конечного результата: стандартов волновых давлений и изгибающих моментов с учетом нагрузок при слеминге.

В состав разработанного программного обеспечения включен ряд модернизированных модулей программного комплекса ДИОЛЬ, который широко применялся и используется в настоящее время в судостроительных расчетах, и прошел международную апробацию. Программное обеспечение включает также ряд модулей, ранее разработанных на кафедре конструкции судов, некоторые из которых усовершенствованы с участием автора диссертации.

В работе обобщается математическая модель, полученная на основе подхода, развивавшегося в течение ряда лет в СПб. ГМТУ под руководством профессора Ростовцева Д.М. [73], [74], [84]. Эта математическая модель базируется на исследованиях, которые являются продолжением работ Г.С. Чувиковского [86], [87].

В первой главе работы дается характеристика современного состояния различных аспектов общей проблемы слеминга, приведен краткий обзор литературы, относящейся к этой проблеме. Дана развернутая математическая и физическая постановка задачи, формулируются ее отдельные этапы.

Вторая глава посвящена рассмотрению вопросов, связанных с определением давлений при слеминге и погонных ударных нагрузок на регулярном волнении. Для определения гидродинамической нагрузки при слеминге используется решение задачи о погружении непрямостенного контура (гипотеза плоских сечений), полученное на основе энергетических соотношений, с дополнениями, вытекающими из решений Вагнера [92]. При этом учитывается возможность возникновения как днищевого, так и бортового слеминга.

Здесь же приведена система уравнений продольной качки, используемая в работе для оценки кинематики сечений корпуса на регулярном волнении. Бортовая качка при решении задачи не учитывается.

Третья глава посвящена задачам определения реакций корпуса на действующие внешние нагрузки в условиях регулярного и нерегулярного волнения. Рассмотрены методы определения перемещений корпуса, обусловленных дополнительной нагрузкой при слеминге. Получены выражения для динамического изгибающего момента.

Задача решается сначала в частотной области, затем во временной. Исходными данными для расчета нелинейных нагрузок в 1 приближении являются АЧХ качки, относительных перемещений и скоростей сечений, корпуса и волны, рассчитанные в линейной постановке (глава 2).

Далее для ряда длин волн из рассмотренных в АЧХ, при конкретных высотах волн, задаваемых через крутизну, производится расчет по времени. Расчет выполняется в диапазоне времени, равном периоду вынужденной качки (всплытие, погружение), либо половине периода качки (только погружение).

Рассмотрен метод решения задачи определения стандартов изгибающих моментов, обусловленных слемингом. Метод основан на непосредственной линеаризации функций амплитудно-частотных характеристик динамических изгибающих моментов в сечениях корпуса, нелинейных по высоте волны [26], [27]. АЧХ, полученные при помощи такого подхода, затем используются для определения стандартов волновых изгибающих моментов с учетом слеминга на основе аппарата спектрального преобразования случайного процесса. После линеаризации осуществляется переход к расчету на нерегулярном волнении.

В четвертой главе дается общее описание программного комплекса реализующего предложенный метод расчета нагрузок при слеминге на нерегулярном волнении, приведен анализ результатов расчета, полученных с использованием разработанного программного комплекса.

В заключении сформулированы основные результаты исследований, представленных в диссертации.

Подобные работы
Доан Ким Тхай
Определение расчетных волновых нагрузок при проектировании конструкций корпуса судна
Тряскин Владимир Николаевич
Методология автоматизированного проектирования конструкций корпуса судна
Лам Ван Хунг
Методические основы, алгоритмы и программное обеспечение задач проектирования и контроля технического состояния конструкций корпуса судна
Кузнецова Татьяна Александровна
Обоснование конструкции корпуса танкеров внутреннего и смешанного плавания для повышения их безопасности при столкновении
Сухбаатарын Мунхжаргал
Разработка и исследование нейросетевых алгоритмов краткосрочного прогнозирования нагрузки центральной электроэнергетической системы Монголии
Кузьменко Николай Григорьевич
Развитие метода оценки пропускной способности мультисервисной сети при интервальном прогнозировании интенсивности нагрузки
Овчинников Игорь Николаевич
Обоснование режимов модельных испытаний на вибрацию. Диагностика и прогнозирование разрушения при циклических нагрузках
Зимин Роман Валерьевич
Разработка статистических моделей прогнозирования электропотребления и графиков нагрузки ЭЭС
Макоклюев Борис Иванович
Разработка методов, алгоритмов и программ прогнозирования с учетом метеофакторов графиков нагрузки для повышения эффективности управления режимами энергосистем
Атнагулов Альберт Рашитович
Прогнозирование технического состояния УЭЦН при эксплуатации с оценкой динамических нагрузок

© Научная электронная библиотека «Веда», 2003-2013.
info@lib.ua-ru.net